toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Josep Llados edit  openurl
  Title The 5G of Document Intelligence Type Conference Article
  Year 2021 Publication 3rd Workshop on Future of Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address (up) Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ Serial 3677  
Permanent link to this record
 

 
Author Agnes Borras; Josep Llados edit  isbn
openurl 
  Title Corest: A measure of color and space stability to detect salient regions according to human criteria Type Conference Article
  Year 2009 Publication 5th International Conference on Computer Vision Theory and Applications Abbreviated Journal  
  Volume Issue Pages 204-209  
  Keywords  
  Abstract  
  Address (up) Lisboa, Portugal  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989-8111-69-2 Medium  
  Area Expedition Conference VISAPP  
  Notes DAG Approved no  
  Call Number DAG @ dag @ BoL2009 Serial 1225  
Permanent link to this record
 

 
Author Partha Pratim Roy; Josep Llados; Umapada Pal edit  isbn
openurl 
  Title A Complete System for Detection and Recognition of Text in Graphical Documents using Background Information Type Conference Article
  Year 2009 Publication 5th International Conference on Computer Vision Theory and Applications Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address (up) Lisboa, Portugal  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-989-8111-69-2 Medium  
  Area Expedition Conference VISAPP  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RLP2009 Serial 1238  
Permanent link to this record
 

 
Author Carlos David Martinez Hinarejos; Josep Llados; Alicia Fornes; Francisco Casacuberta; Lluis de Las Heras; Joan Mas; Moises Pastor; Oriol Ramos Terrades; Joan Andreu Sanchez; Enrique Vidal; Fernando Vilariño edit   pdf
openurl 
  Title Context, multimodality, and user collaboration in handwritten text processing: the CoMUN-HaT project Type Conference Article
  Year 2016 Publication 3rd IberSPEECH Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Processing of handwritten documents is a task that is of wide interest for many
purposes, such as those related to preserve cultural heritage. Handwritten text recognition techniques have been successfully applied during the last decade to obtain transcriptions of handwritten documents, and keyword spotting techniques have been applied for searching specific terms in image collections of handwritten documents. However, results on transcription and indexing are far from perfect. In this framework, the use of new data sources arises as a new paradigm that will allow for a better transcription and indexing of handwritten documents. Three main different data sources could be considered: context of the document (style, writer, historical time, topics,. . . ), multimodal data (representations of the document in a different modality, such as the speech signal of the dictation of the text), and user feedback (corrections, amendments,. . . ). The CoMUN-HaT project aims at the integration of these different data sources into the transcription and indexing task for handwritten documents: the use of context derived from the analysis of the documents, how multimodality can aid the recognition process to obtain more accurate transcriptions (including transcription in a modern version of the language), and integration into a userin-the-loop assisted text transcription framework. This will be reflected in the construction of a transcription and indexing platform that can be used by both professional and nonprofessional users, contributing to crowd-sourcing activities to preserve cultural heritage and to obtain an accessible version of the involved corpus.
 
  Address (up) Lisboa; Portugal; November 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IberSPEECH  
  Notes DAG; MV; 600.097;SIAI Approved no  
  Call Number Admin @ si @MLF2016 Serial 2813  
Permanent link to this record
 

 
Author Miquel Ferrer; Robert Benavente; Ernest Valveny; J. Garcia; Agata Lapedriza; Gemma Sanchez edit  openurl
  Title Aprendizaje Cooperativo Aplicado a la Docencia de las Asignaturas de Programacion en Ingenieria Informatica Type Miscellaneous
  Year 2008 Publication Octava Jornada sobre Aprendizaje Cooperativo, 41–46 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address (up) Lleida (Spain).  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR;DAG;CIC;MV Approved no  
  Call Number BCNPCL @ bcnpcl @ FBV2008 Serial 955  
Permanent link to this record
 

 
Author Josep Llados; Ernest Valveny; Gemma Sanchez; Enric Marti edit   pdf
url  doi
isbn  openurl
  Title Symbol recognition: current advances and perspectives Type Book Chapter
  Year 2002 Publication Graphics Recognition Algorithms And Applications Abbreviated Journal LNCS  
  Volume 2390 Issue Pages 104-128  
  Keywords  
  Abstract The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content.  
  Address (up) London, UK  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor Dorothea Blostein and Young- Bin Kwon  
  Language Summary Language Original Title  
  Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 3-540-44066-6 Medium  
  Area Expedition Conference GREC  
  Notes DAG; IAM; Approved no  
  Call Number IAM @ iam @ LVS2002 Serial 1572  
Permanent link to this record
 

 
Author Sounak Dey; Pau Riba; Anjan Dutta; Josep Llados; Yi-Zhe Song edit   pdf
url  doi
openurl 
  Title Doodle to Search: Practical Zero-Shot Sketch-Based Image Retrieval Type Conference Article
  Year 2019 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2179-2188  
  Keywords  
  Abstract In this paper, we investigate the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognizes two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended, that consists of 330,000 sketches and 204,000 photos spanning across 110 categories. Highly abstract amateur human sketches are purposefully sourced to maximize the domain gap, instead of ones included in existing datasets that can often be semi-photorealistic. We then formulate a ZS-SBIR framework to jointly model sketches and photos into a common embedding space. A novel strategy to mine the mutual information among domains is specifically engineered to alleviate the domain gap. External semantic knowledge is further embedded to aid semantic transfer. We show that, rather surprisingly, retrieval performance significantly outperforms that of state-of-the-art on existing datasets that can already be achieved using a reduced version of our model. We further demonstrate the superior performance of our full model by comparing with a number of alternatives on the newly proposed dataset. The new dataset, plus all training and testing code of our model, will be publicly released to facilitate future research.  
  Address (up) Long beach; CA; USA; June 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes DAG; 600.140; 600.121; 600.097 Approved no  
  Call Number Admin @ si @ DRD2019 Serial 3462  
Permanent link to this record
 

 
Author Anjan Dutta; Zeynep Akata edit   pdf
url  doi
openurl 
  Title Semantically Tied Paired Cycle Consistency for Zero-Shot Sketch-based Image Retrieval Type Conference Article
  Year 2019 Publication 32nd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 5089-5098  
  Keywords  
  Abstract Zero-shot sketch-based image retrieval (SBIR) is an emerging task in computer vision, allowing to retrieve natural images relevant to sketch queries that might not been seen in the training phase. Existing works either require aligned sketch-image pairs or inefficient memory fusion layer for mapping the visual information to a semantic space. In this work, we propose a semantically aligned paired cycle-consistent generative (SEM-PCYC) model for zero-shot SBIR, where each branch maps the visual information to a common semantic space via an adversarial training. Each of these branches maintains a cycle consistency that only requires supervision at category levels, and avoids the need of highly-priced aligned sketch-image pairs. A classification criteria on the generators' outputs ensures the visual to semantic space mapping to be discriminating. Furthermore, we propose to combine textual and hierarchical side information via a feature selection auto-encoder that selects discriminating side information within a same end-to-end model. Our results demonstrate a significant boost in zero-shot SBIR performance over the state-of-the-art on the challenging Sketchy and TU-Berlin datasets.  
  Address (up) Long beach; California; USA; June 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes DAG; 600.141; 600.121 Approved no  
  Call Number Admin @ si @ DuA2019 Serial 3268  
Permanent link to this record
 

 
Author Ali Furkan Biten; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Good News, Everyone! Context driven entity-aware captioning for news images Type Conference Article
  Year 2019 Publication 32nd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 12458-12467  
  Keywords  
  Abstract Current image captioning systems perform at a merely descriptive level, essentially enumerating the objects in the scene and their relations. Humans, on the contrary, interpret images by integrating several sources of prior knowledge of the world. In this work, we aim to take a step closer to producing captions that offer a plausible interpretation of the scene, by integrating such contextual information into the captioning pipeline. For this we focus on the captioning of images used to illustrate news articles. We propose a novel captioning method that is able to leverage contextual information provided by the text of news articles associated with an image. Our model is able to selectively draw information from the article guided by visual cues, and to dynamically extend the output dictionary to out-of-vocabulary named entities that appear in the context source. Furthermore we introduce“ GoodNews”, the largest news image captioning dataset in the literature and demonstrate state-of-the-art results.  
  Address (up) Long beach; California; USA; june 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes DAG; 600.129; 600.135; 601.338; 600.121 Approved no  
  Call Number Admin @ si @ BGR2019 Serial 3289  
Permanent link to this record
 

 
Author Francisco Alvaro; Francisco Cruz; Joan Andreu Sanchez; Oriol Ramos Terrades; Jose Miguel Bemedi edit   pdf
doi  isbn
openurl 
  Title Page Segmentation of Structured Documents Using 2D Stochastic Context-Free Grammars Type Conference Article
  Year 2013 Publication 6th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 7887 Issue Pages 133-140  
  Keywords  
  Abstract In this paper we define a bidimensional extension of Stochastic Context-Free Grammars for page segmentation of structured documents. Two sets of text classification features are used to perform an initial classification of each zone of the page. Then, the page segmentation is obtained as the most likely hypothesis according to a grammar. This approach is compared to Conditional Random Fields and results show significant improvements in several cases. Furthermore, grammars provide a detailed segmentation that allowed a semantic evaluation which also validates this model.  
  Address (up) Madeira; Portugal; June 2013  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-38627-5 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG; 605.203 Approved no  
  Call Number Admin @ si @ ACS2013 Serial 2328  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: