toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author George Tom; Minesh Mathew; Sergi Garcia Bordils; Dimosthenis Karatzas; CV Jawahar edit  url
openurl 
  Title ICDAR 2023 Competition on RoadText Video Text Detection, Tracking and Recognition Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14188 Issue Pages 577–586  
  Keywords  
  Abstract (up) In this report, we present the final results of the ICDAR 2023 Competition on RoadText Video Text Detection, Tracking and Recognition. The RoadText challenge is based on the RoadText-1K dataset and aims to assess and enhance current methods for scene text detection, recognition, and tracking in videos. The RoadText-1K dataset contains 1000 dash cam videos with annotations for text bounding boxes and transcriptions in every frame. The competition features an end-to-end task, requiring systems to accurately detect, track, and recognize text in dash cam videos. The paper presents a comprehensive review of the submitted methods along with a detailed analysis of the results obtained by the methods. The analysis provides valuable insights into the current capabilities and limitations of video text detection, tracking, and recognition systems for dashcam videos.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ TMG2023 Serial 3905  
Permanent link to this record
 

 
Author Juan Ignacio Toledo edit  isbn
openurl 
  Title Information Extraction from Heterogeneous Handwritten Documents Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) In this thesis we explore information Extraction from totally or partially handwritten documents. Basically we are dealing with two different application scenarios. The first scenario are modern highly structured documents like forms. In this kind of documents, the semantic information is encoded in different fields with a pre-defined location in the document, therefore, information extraction becomes roughly equivalent to transcription. The second application scenario are loosely structured totally handwritten documents, besides transcribing them, we need to assign a semantic label, from a set of known values to the handwritten words.
In both scenarios, transcription is an important part of the information extraction. For that reason in this thesis we present two methods based on Neural Networks, to transcribe handwritten text.In order to tackle the challenge of loosely structured documents, we have produced a benchmark, consisting of a dataset, a defined set of tasks and a metric, that was presented to the community as an international competition. Also, we propose different models based on Convolutional and Recurrent neural networks that are able to transcribe and assign different semantic labels to each handwritten words, that is, able to perform Information Extraction.
 
  Address July 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Alicia Fornes;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-948531-7-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ Tol2019 Serial 3389  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui edit  isbn
openurl 
  Title Document Image Enhancement and Recognition in Low Resource Scenarios: Application to Ciphers and Handwritten Text Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) In this thesis, we propose different contributions with the goal of enhancing and recognizing historical handwritten document images, especially the ones with rare scripts, such as cipher documents.
In the first part, some effective end-to-end models for Document Image Enhancement (DIE) using deep learning models were presented. First, Generative Adversarial Networks (cGAN) for different tasks (document clean-up, binarization, deblurring, and watermark removal) were explored. Next, we further improve the results by recovering the degraded document images into a clean and readable form by integrating a text recognizer into the cGAN model to promote the generated document image to be more readable. Afterward, we present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images, in an end-to-end fashion.
The second part of the thesis addresses Handwritten Text Recognition (HTR) in low resource scenarios, i.e. when only few labeled training data is available. We propose novel methods for recognizing ciphers with rare scripts. First, a few-shot object detection based method was proposed. Then, we incorporate a progressive learning strategy that automatically assignspseudo-labels to a set of unlabeled data to reduce the human labor of annotating few pages while maintaining the good performance of the model. Secondly, a data generation technique based on Bayesian Program Learning (BPL) is proposed to overcome the lack of data in such rare scripts. Thirdly, we propose a Text-Degradation Invariant Auto Encoder (Text-DIAE). This latter self-supervised model is designed to tackle two tasks, text recognition and document image enhancement. The proposed model does not exhibit limitations of previous state-of-the-art methods based on contrastive losses, while at the same time, it requires substantially fewer data samples to converge.
In the third part of the thesis, we analyze, from the user perspective, the usage of HTR systems in low resource scenarios. This contrasts with the usual research on HTR, which often focuses on technical aspects only and rarely devotes efforts on implementing software tools for scholars in Humanities.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Alicia Fornes;Yousri Kessentini  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-8-6 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Sou2022 Serial 3757  
Permanent link to this record
 

 
Author Sounak Dey; Anjan Dutta; Suman Ghosh; Ernest Valveny; Josep Llados; Umapada Pal edit   pdf
doi  openurl
  Title Learning Cross-Modal Deep Embeddings for Multi-Object Image Retrieval using Text and Sketch Type Conference Article
  Year 2018 Publication 24th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 916 - 921  
  Keywords  
  Abstract (up) In this work we introduce a cross modal image retrieval system that allows both text and sketch as input modalities for the query. A cross-modal deep network architecture is formulated to jointly model the sketch and text input modalities as well as the the image output modality, learning a common embedding between text and images and between sketches and images. In addition, an attention model is used to selectively focus the attention on the different objects of the image, allowing for retrieval with multiple objects in the query. Experiments show that the proposed method performs the best in both single and multiple object image retrieval in standard datasets.  
  Address Beijing; China; August 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 602.167; 602.168; 600.097; 600.084; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ DDG2018b Serial 3152  
Permanent link to this record
 

 
Author David Fernandez; R.Manmatha; Josep Llados; Alicia Fornes edit   pdf
doi  isbn
openurl 
  Title Sequential Word Spotting in Historical Handwritten Documents Type Conference Article
  Year 2014 Publication 11th IAPR International Workshop on Document Analysis and Systems Abbreviated Journal  
  Volume Issue Pages 101 - 105  
  Keywords  
  Abstract (up) In this work we present a handwritten word spotting approach that takes advantage of the a priori known order of appearance of the query words. Given an ordered sequence of query word instances, the proposed approach performs a
sequence alignment with the words in the target collection. Although the alignment is quite sparse, i.e. the number of words in the database is higher than the query set, the improvement in the overall performance is sensitively higher than isolated word spotting. As application dataset, we use a collection of handwritten marriage licenses taking advantage of the ordered
index pages of family names.
 
  Address Tours; Francia; April 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4799-3243-6 Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.061; 600.056; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ FML2014 Serial 2462  
Permanent link to this record
 

 
Author Raul Gomez; Jaume Gibert; Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Exploring Hate Speech Detection in Multimodal Publications Type Conference Article
  Year 2020 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) In this work we target the problem of hate speech detection in multimodal publications formed by a text and an image. We gather and annotate a large scale dataset from Twitter, MMHS150K, and propose different models that jointly analyze textual and visual information for hate speech detection, comparing them with unimodal detection. We provide quantitative and qualitative results and analyze the challenges of the proposed task. We find that, even though images are useful for the hate speech detection task, current multimodal models cannot outperform models analyzing only text. We discuss why and open the field and the dataset for further research.  
  Address Aspen; March 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ GGG2020a Serial 3280  
Permanent link to this record
 

 
Author Andres Mafla; Ruben Tito; Sounak Dey; Lluis Gomez; Marçal Rusiñol; Ernest Valveny; Dimosthenis Karatzas edit  url
openurl 
  Title Real-time Lexicon-free Scene Text Retrieval Type Journal Article
  Year 2021 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 110 Issue Pages 107656  
  Keywords  
  Abstract (up) In this work, we address the task of scene text retrieval: given a text query, the system returns all images containing the queried text. The proposed model uses a single shot CNN architecture that predicts bounding boxes and builds a compact representation of spotted words. In this way, this problem can be modeled as a nearest neighbor search of the textual representation of a query over the outputs of the CNN collected from the totality of an image database. Our experiments demonstrate that the proposed model outperforms previous state-of-the-art, while offering a significant increase in processing speed and unmatched expressiveness with samples never seen at training time. Several experiments to assess the generalization capability of the model are conducted in a multilingual dataset, as well as an application of real-time text spotting in videos.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.129; 601.338 Approved no  
  Call Number Admin @ si @ MTD2021 Serial 3493  
Permanent link to this record
 

 
Author Hongxing Gao edit  isbn
openurl 
  Title Focused Structural Document Image Retrieval in Digital Mailroom Applications Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) In this work, we develop a generic framework that is able to handle the document retrieval problem in various scenarios such as searching for full page matches or retrieving the counterparts for specific document areas, focusing on their structural similarity or letting their visual resemblance to play a dominant role. Based on the spatial indexing technique, we propose to search for matches of local key-region pairs carrying both structural and visual information from the collection while a scheme allowing to adjust the relative contribution of structural and visual similarity is presented.
Based on the fact that the structure of documents is tightly linked with the distance among their elements, we firstly introduce an efficient detector named Distance Transform based Maximally Stable Extremal Regions (DTMSER). We illustrate that this detector is able to efficiently extract the structure of a document image as a dendrogram (hierarchical tree) of multi-scale key-regions that roughly correspond to letters, words and paragraphs. We demonstrate that, without benefiting from the structure information, the key-regions extracted by the DTMSER algorithm achieve better results comparing with state-of-the-art methods while much less amount of key-regions are employed.
We subsequently propose a pair-wise Bag of Words (BoW) framework to efficiently embed the explicit structure extracted by the DTMSER algorithm. We represent each document as a list of key-region pairs that correspond to the edges in the dendrogram where inclusion relationship is encoded. By employing those structural key-region pairs as the pooling elements for generating the histogram of features, the proposed method is able to encode the explicit inclusion relations into a BoW representation. The experimental results illustrate that the pair-wise BoW, powered by the embedded structural information, achieves remarkable improvement over the conventional BoW and spatial pyramidal BoW methods.
To handle various retrieval scenarios in one framework, we propose to directly query a series of key-region pairs, carrying both structure and visual information, from the collection. We introduce the spatial indexing techniques to the document retrieval community to speed up the structural relationship computation for key-region pairs. We firstly test the proposed framework in a full page retrieval scenario where structurally similar matches are expected. In this case, the pair-wise querying method achieves notable improvement over the BoW and spatial pyramidal BoW frameworks. Furthermore, we illustrate that the proposed method is also able to handle focused retrieval situations where the queries are defined as a specific interesting partial areas of the images. We examine our method on two types of focused queries: structure-focused and exact queries. The experimental results show that, the proposed generic framework obtains nearly perfect precision on both types of focused queries while it is the first framework able to tackle structure-focused queries, setting a new state of the art in the field.
Besides, we introduce a line verification method to check the spatial consistency among the matched key-region pairs. We propose a computationally efficient version of line verification through a two step implementation. We first compute tentative localizations of the query and subsequently employ them to divide the matched key-region pairs into several groups, then line verification is performed within each group while more precise bounding boxes are computed. We demonstrate that, comparing with the standard approach (based on RANSAC), the line verification proposed generally achieves much higher recall with slight loss on precision on specific queries.
 
  Address January 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Dimosthenis Karatzas;Marçal Rusiñol  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-0-7 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ Gao2015 Serial 2577  
Permanent link to this record
 

 
Author Minesh Mathew; Viraj Bagal; Ruben Tito; Dimosthenis Karatzas; Ernest Valveny; C.V. Jawahar edit   pdf
url  doi
openurl 
  Title InfographicVQA Type Conference Article
  Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1697-1706  
  Keywords Document Analysis Datasets; Evaluation and Comparison of Vision Algorithms; Vision and Languages  
  Abstract (up) Infographics communicate information using a combination of textual, graphical and visual elements. This work explores the automatic understanding of infographic images by using a Visual Question Answering technique. To this end, we present InfographicVQA, a new dataset comprising a diverse collection of infographics and question-answer annotations. The questions require methods that jointly reason over the document layout, textual content, graphical elements, and data visualizations. We curate the dataset with an emphasis on questions that require elementary reasoning and basic arithmetic skills. For VQA on the dataset, we evaluate two Transformer-based strong baselines. Both the baselines yield unsatisfactory results compared to near perfect human performance on the dataset. The results suggest that VQA on infographics--images that are designed to communicate information quickly and clearly to human brain--is ideal for benchmarking machine understanding of complex document images. The dataset is available for download at docvqa. org  
  Address Virtual; Waikoloa; Hawai; USA; January 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.155 Approved no  
  Call Number MBT2022 Serial 3625  
Permanent link to this record
 

 
Author Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal edit   pdf
url  doi
openurl 
  Title Beyond Document Object Detection: Instance-Level Segmentation of Complex Layouts Type Journal Article
  Year 2021 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 24 Issue Pages 269–281  
  Keywords  
  Abstract (up) Information extraction is a fundamental task of many business intelligence services that entail massive document processing. Understanding a document page structure in terms of its layout provides contextual support which is helpful in the semantic interpretation of the document terms. In this paper, inspired by the progress of deep learning methodologies applied to the task of object recognition, we transfer these models to the specific case of document object detection, reformulating the traditional problem of document layout analysis. Moreover, we importantly contribute to prior arts by defining the task of instance segmentation on the document image domain. An instance segmentation paradigm is especially important in complex layouts whose contents should interact for the proper rendering of the page, i.e., the proper text wrapping around an image. Finally, we provide an extensive evaluation, both qualitative and quantitative, that demonstrates the superior performance of the proposed methodology over the current state of the art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.140; 110.312 Approved no  
  Call Number Admin @ si @ BRL2021b Serial 3574  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: