|
Records |
Links |
|
Author |
Albert Berenguel |

|
|
Title |
Analysis of background textures in banknotes and identity documents for counterfeit detection |
Type |
Book Whole |
|
Year |
2019 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
Counterfeiting and piracy are a form of theft that has been steadily growing in recent years. A counterfeit is an unauthorized reproduction of an authentic/genuine object. Banknotes and identity documents are two common objects of counterfeiting. The former is used by organized criminal groups to finance a variety of illegal activities or even to destabilize entire countries due the inflation effect. Generally, in order to run their illicit businesses, counterfeiters establish companies and bank accounts using fraudulent identity documents. The illegal activities generated by counterfeit banknotes and identity documents has a damaging effect on business, the economy and the general population. To fight against counterfeiters, governments and authorities around the globe cooperate and develop security features to protect their security documents. Many of the security features in identity documents can also be found in banknotes. In this dissertation we focus our efforts in detecting the counterfeit banknotes and identity documents by analyzing the security features at the background printing. Background areas on secure documents contain fine-line patterns and designs that are difficult to reproduce without the manufacturers cutting-edge printing equipment. Our objective is to find the loose of resolution between the genuine security document and the printed counterfeit version with a publicly available commercial printer. We first present the most complete survey to date in identity and banknote security features. The compared algorithms and systems are based on computer vision and machine learning. Then we advance to present the banknote and identity counterfeit dataset we have built and use along all this thesis. Afterwards, we evaluate and adapt algorithms in the literature for the security background texture analysis. We study this problem from the point of view of robustness, computational efficiency and applicability into a real and non-controlled industrial scenario, proposing key insights to use these algorithms. Next, within the industrial environment of this thesis, we build a complete service oriented architecture to detect counterfeit documents. The mobile application and the server framework intends to be used even by non-expert document examiners to spot counterfeits. Later, we re-frame the problem of background texture counterfeit detection as a full-reference game of spotting the differences, by alternating glimpses between a counterfeit and a genuine background using recurrent neural networks. Finally, we deal with the lack of counterfeit samples, studying different approaches based on anomaly detection. |
|
|
Address |
November 2019 |
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
Ediciones Graficas Rey |
Place of Publication |
|
Editor |
Oriol Ramos Terrades;Josep Llados |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-121011-2-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ Ber2019 |
Serial |
3395 |
|
Permanent link to this record |
|
|
|
|
Author |
Y. Patel; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas; C.V. Jawahar |


|
|
Title |
Self-Supervised Visual Representations for Cross-Modal Retrieval |
Type |
Conference Article |
|
Year |
2019 |
Publication |
ACM International Conference on Multimedia Retrieval |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
182–186 |
|
|
Keywords |
|
|
|
Abstract  |
Cross-modal retrieval methods have been significantly improved in last years with the use of deep neural networks and large-scale annotated datasets such as ImageNet and Places. However, collecting and annotating such datasets requires a tremendous amount of human effort and, besides, their annotations are limited to discrete sets of popular visual classes that may not be representative of the richer semantics found on large-scale cross-modal retrieval datasets. In this paper, we present a self-supervised cross-modal retrieval framework that leverages as training data the correlations between images and text on the entire set of Wikipedia articles. Our method consists in training a CNN to predict: (1) the semantic context of the article in which an image is more probable to appear as an illustration, and (2) the semantic context of its caption. Our experiments demonstrate that the proposed method is not only capable of learning discriminative visual representations for solving vision tasks like classification, but that the learned representations are better for cross-modal retrieval when compared to supervised pre-training of the network on the ImageNet dataset. |
|
|
Address |
Otawa; Canada; june 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICMR |
|
|
Notes |
DAG; 600.121; 600.129 |
Approved |
no |
|
|
Call Number |
Admin @ si @ PGR2019 |
Serial |
3288 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas |


|
|
Title |
Good News, Everyone! Context driven entity-aware captioning for news images |
Type |
Conference Article |
|
Year |
2019 |
Publication |
32nd IEEE Conference on Computer Vision and Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
12458-12467 |
|
|
Keywords |
|
|
|
Abstract  |
Current image captioning systems perform at a merely descriptive level, essentially enumerating the objects in the scene and their relations. Humans, on the contrary, interpret images by integrating several sources of prior knowledge of the world. In this work, we aim to take a step closer to producing captions that offer a plausible interpretation of the scene, by integrating such contextual information into the captioning pipeline. For this we focus on the captioning of images used to illustrate news articles. We propose a novel captioning method that is able to leverage contextual information provided by the text of news articles associated with an image. Our model is able to selectively draw information from the article guided by visual cues, and to dynamically extend the output dictionary to out-of-vocabulary named entities that appear in the context source. Furthermore we introduce“ GoodNews”, the largest news image captioning dataset in the literature and demonstrate state-of-the-art results. |
|
|
Address |
Long beach; California; USA; june 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPR |
|
|
Notes |
DAG; 600.129; 600.135; 601.338; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGR2019 |
Serial |
3289 |
|
Permanent link to this record |
|
|
|
|
Author |
Ruben Tito; Dimosthenis Karatzas; Ernest Valveny |


|
|
Title |
Document Collection Visual Question Answering |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12822 |
Issue |
|
Pages |
778-792 |
|
|
Keywords |
Document collection; Visual Question Answering |
|
|
Abstract  |
Current tasks and methods in Document Understanding aims to process documents as single elements. However, documents are usually organized in collections (historical records, purchase invoices), that provide context useful for their interpretation. To address this problem, we introduce Document Collection Visual Question Answering (DocCVQA) a new dataset and related task, where questions are posed over a whole collection of document images and the goal is not only to provide the answer to the given question, but also to retrieve the set of documents that contain the information needed to infer the answer. Along with the dataset we propose a new evaluation metric and baselines which provide further insights to the new dataset and task. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TKV2021 |
Serial |
3622 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten; Ruben Tito; Andres Mafla; Lluis Gomez; Marçal Rusiñol; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas |


|
|
Title |
Scene Text Visual Question Answering |
Type |
Conference Article |
|
Year |
2019 |
Publication |
18th IEEE International Conference on Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
4291-4301 |
|
|
Keywords |
|
|
|
Abstract  |
Current visual question answering datasets do not consider the rich semantic information conveyed by text within an image. In this work, we present a new dataset, ST-VQA, that aims to highlight the importance of exploiting highlevel semantic information present in images as textual cues in the Visual Question Answering process. We use this dataset to define a series of tasks of increasing difficulty for which reading the scene text in the context provided by the visual information is necessary to reason and generate an appropriate answer. We propose a new evaluation metric for these tasks to account both for reasoning errors as well as shortcomings of the text recognition module. In addition we put forward a series of baseline methods, which provide further insight to the newly released dataset, and set the scene for further research. |
|
|
Address |
Seul; Corea; October 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICCV |
|
|
Notes |
DAG; 600.129; 600.135; 601.338; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BTM2019b |
Serial |
3285 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados;Horst Bunke; Enric Marti |


|
|
Title |
Using Cyclic String Matching to Find Rotational and Reflectional Symmetries in Shapes |
Type |
Conference Article |
|
Year |
1997 |
Publication |
Intelligent Robots: Sensing, Modeling and Planning |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
164-179 |
|
|
Keywords |
|
|
|
Abstract  |
Dagstuhl Workshop |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
World Scientific Press |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
9810231857 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG;IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ LBM1997b |
Serial |
1563 |
|
Permanent link to this record |
|
|
|
|
Author |
Adria Molina; Lluis Gomez; Oriol Ramos Terrades; Josep Llados |


|
|
Title |
A Generic Image Retrieval Method for Date Estimation of Historical Document Collections |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Document Analysis Systems.15th IAPR International Workshop, (DAS2022) |
Abbreviated Journal |
|
|
|
Volume |
13237 |
Issue |
|
Pages |
583–597 |
|
|
Keywords |
Date estimation; Document retrieval; Image retrieval; Ranking loss; Smooth-nDCG |
|
|
Abstract  |
Date estimation of historical document images is a challenging problem, with several contributions in the literature that lack of the ability to generalize from one dataset to others. This paper presents a robust date estimation system based in a retrieval approach that generalizes well in front of heterogeneous collections. We use a ranking loss function named smooth-nDCG to train a Convolutional Neural Network that learns an ordination of documents for each problem. One of the main usages of the presented approach is as a tool for historical contextual retrieval. It means that scholars could perform comparative analysis of historical images from big datasets in terms of the period where they were produced. We provide experimental evaluation on different types of documents from real datasets of manuscript and newspaper images. |
|
|
Address |
La Rochelle, France; May 22–25, 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MGR2022 |
Serial |
3694 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Pau Riba; Josep Llados; Alicia Fornes |


|
|
Title |
Hierarchical Stochastic Graphlet Embedding for Graph-based Pattern Recognition |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Neural Computing and Applications |
Abbreviated Journal |
NEUCOMA |
|
|
Volume |
32 |
Issue |
|
Pages |
11579–11596 |
|
|
Keywords |
|
|
|
Abstract  |
Despite being very successful within the pattern recognition and machine learning community, graph-based methods are often unusable because of the lack of mathematical operations defined in graph domain. Graph embedding, which maps graphs to a vectorial space, has been proposed as a way to tackle these difficulties enabling the use of standard machine learning techniques. However, it is well known that graph embedding functions usually suffer from the loss of structural information. In this paper, we consider the hierarchical structure of a graph as a way to mitigate this loss of information. The hierarchical structure is constructed by topologically clustering the graph nodes and considering each cluster as a node in the upper hierarchical level. Once this hierarchical structure is constructed, we consider several configurations to define the mapping into a vector space given a classical graph embedding, in particular, we propose to make use of the stochastic graphlet embedding (SGE). Broadly speaking, SGE produces a distribution of uniformly sampled low-to-high-order graphlets as a way to embed graphs into the vector space. In what follows, the coarse-to-fine structure of a graph hierarchy and the statistics fetched by the SGE complements each other and includes important structural information with varied contexts. Altogether, these two techniques substantially cope with the usual information loss involved in graph embedding techniques, obtaining a more robust graph representation. This fact has been corroborated through a detailed experimental evaluation on various benchmark graph datasets, where we outperform the state-of-the-art methods. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.140; 600.121; 600.141 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DRL2020 |
Serial |
3348 |
|
Permanent link to this record |
|
|
|
|
Author |
Arnau Baro; Alicia Fornes; Carles Badal |

|
|
Title |
Handwritten Historical Music Recognition by Sequence-to-Sequence with Attention Mechanism |
Type |
Conference Article |
|
Year |
2020 |
Publication |
17th International Conference on Frontiers in Handwriting Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks. |
|
|
Address |
Virtual ICFHR; September 2020 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICFHR |
|
|
Notes |
DAG; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BFB2020 |
Serial |
3448 |
|
Permanent link to this record |
|
|
|
|
Author |
Arnau Baro; Carles Badal; Pau Torras; Alicia Fornes |


|
|
Title |
Handwritten Historical Music Recognition through Sequence-to-Sequence with Attention Mechanism |
Type |
Conference Article |
|
Year |
2022 |
Publication |
3rd International Workshop on Reading Music Systems (WoRMS2021) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
55-59 |
|
|
Keywords |
Optical Music Recognition; Digits; Image Classification |
|
|
Abstract  |
Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks. |
|
|
Address |
July 23, 2021, Alicante (Spain) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
WoRMS |
|
|
Notes |
DAG; 600.121; 600.162; 602.230; 600.140 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BBT2022 |
Serial |
3734 |
|
Permanent link to this record |