toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author J. Chazalon; P. Gomez-Kramer; Jean-Christophe Burie; M.Coustaty; S.Eskenazi; Muhammad Muzzamil Luqman; N.Nayef; Marçal Rusiñol; N. Sidere; Jean-Marc Ogier edit   pdf
doi  openurl
  Title SmartDoc 2017 Video Capture: Mobile Document Acquisition in Video Mode Type Conference Article
  Year 2017 Publication 1st International Workshop on Open Services and Tools for Document Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) As mobile document acquisition using smartphones is getting more and more common, along with the continuous improvement of mobile devices (both in terms of computing power and image quality), we can wonder to which extent mobile phones can replace desktop scanners. Modern applications can cope with perspective distortion and normalize the contrast of a document page captured with a smartphone, and in some cases like bottle labels or posters, smartphones even have the advantage of allowing the acquisition of non-flat or large documents. However, several cases remain hard to handle, such as reflective documents (identity cards, badges, glossy magazine cover, etc.) or large documents for which some regions require an important amount of detail. This paper introduces the SmartDoc 2017 benchmark (named “SmartDoc Video Capture”), which aims at
assessing whether capturing documents using the video mode of a smartphone could solve those issues. The task under evaluation is both a stitching and a reconstruction problem, as the user can move the device over different parts of the document to capture details or try to erase highlights. The material released consists of a dataset, an evaluation method and the associated tool, a sample method, and the tools required to extend the dataset. All the components are released publicly under very permissive licenses, and we particularly cared about maximizing the ease of
understanding, usage and improvement.
 
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR-OST  
  Notes DAG; 600.084; 600.121 Approved no  
  Call Number Admin @ si @ CGB2017 Serial 2997  
Permanent link to this record
 

 
Author Asma Bensalah; Jialuo Chen; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados; Miguel A. Ferrer edit   pdf
url  openurl
  Title Towards Stroke Patients' Upper-limb Automatic Motor Assessment Using Smartwatches. Type Conference Article
  Year 2020 Publication International Workshop on Artificial Intelligence for Healthcare Applications Abbreviated Journal  
  Volume 12661 Issue Pages 476-489  
  Keywords  
  Abstract (up) Assessing the physical condition in rehabilitation scenarios is a challenging problem, since it involves Human Activity Recognition (HAR) and kinematic analysis methods. In addition, the difficulties increase in unconstrained rehabilitation scenarios, which are much closer to the real use cases. In particular, our aim is to design an upper-limb assessment pipeline for stroke patients using smartwatches. We focus on the HAR task, as it is the first part of the assessing pipeline. Our main target is to automatically detect and recognize four key movements inspired by the Fugl-Meyer assessment scale, which are performed in both constrained and unconstrained scenarios. In addition to the application protocol and dataset, we propose two detection and classification baseline methods. We believe that the proposed framework, dataset and baseline results will serve to foster this research field.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRW  
  Notes DAG; 600.121; 600.140; Approved no  
  Call Number Admin @ si @ BCF2020 Serial 3508  
Permanent link to this record
 

 
Author Asma Bensalah; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados edit   pdf
doi  openurl
  Title Easing Automatic Neurorehabilitation via Classification and Smoothness Analysis Type Conference Article
  Year 2022 Publication Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022 Abbreviated Journal  
  Volume 13424 Issue Pages 336-348  
  Keywords Neurorehabilitation; Upper-lim; Movement classification; Movement smoothness; Deep learning; Jerk  
  Abstract (up) Assessing the quality of movements for post-stroke patients during the rehabilitation phase is vital given that there is no standard stroke rehabilitation plan for all the patients. In fact, it depends basically on the patient’s functional independence and its progress along the rehabilitation sessions. To tackle this challenge and make neurorehabilitation more agile, we propose an automatic assessment pipeline that starts by recognising patients’ movements by means of a shallow deep learning architecture, then measuring the movement quality using jerk measure and related measures. A particularity of this work is that the dataset used is clinically relevant, since it represents movements inspired from Fugl-Meyer a well common upper-limb clinical stroke assessment scale for stroke patients. We show that it is possible to detect the contrast between healthy and patients movements in terms of smoothness, besides achieving conclusions about the patients’ progress during the rehabilitation sessions that correspond to the clinicians’ findings about each case.  
  Address June 7-9, 2022, Las Palmas de Gran Canaria, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IGS  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ BFC2022 Serial 3738  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit  doi
isbn  openurl
  Title Document noise removal using sparse representations over learned dictionary Type Conference Article
  Year 2013 Publication Symposium on Document engineering Abbreviated Journal  
  Volume Issue Pages 161-168  
  Keywords  
  Abstract (up) best paper award
In this paper, we propose an algorithm for denoising document images using sparse representations. Following a training set, this algorithm is able to learn the main document characteristics and also, the kind of noise included into the documents. In this perspective, we propose to model the noise energy based on the normalized cross-correlation between pairs of noisy and non-noisy documents. Experimental
results on several datasets demonstrate the robustness of our method compared with the state-of-the-art.
 
  Address Barcelona; October 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-1789-4 Medium  
  Area Expedition Conference ACM-DocEng  
  Notes DAG; 600.061 Approved no  
  Call Number Admin @ si @ DTR2013a Serial 2330  
Permanent link to this record
 

 
Author E. Royer; J. Chazalon; Marçal Rusiñol; F. Bouchara edit   pdf
doi  openurl
  Title Benchmarking Keypoint Filtering Approaches for Document Image Matching Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) Best Poster Award.
Reducing the amount of keypoints used to index an image is particularly interesting to control processing time and memory usage in real-time document image matching applications, like augmented documents or smartphone applications. This paper benchmarks two keypoint selection methods on a task consisting of reducing keypoint sets extracted from document images, while preserving detection and segmentation accuracy. We first study the different forms of keypoint filtering, and we introduce the use of the CORE selection method on
keypoints extracted from document images. Then, we extend a previously published benchmark by including evaluations of the new method, by adding the SURF-BRISK detection/description scheme, and by reporting processing speeds. Evaluations are conducted on the publicly available dataset of ICDAR2015 SmartDOC challenge 1. Finally, we prove that reducing the original keypoint set is always feasible and can be beneficial
not only to processing speed but also to accuracy.
 
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.084; 600.121 Approved no  
  Call Number Admin @ si @ RCR2017 Serial 3000  
Permanent link to this record
 

 
Author Marçal Rusiñol; R.Roset; Josep Llados; C.Montaner edit  openurl
  Title Automatic Index Generation of Digitized Map Series by Coordinate Extraction and Interpretation Type Journal
  Year 2011 Publication e-Perimetron Abbreviated Journal ePER  
  Volume 6 Issue 4 Pages 219-229  
  Keywords  
  Abstract (up) By means of computer vision algorithms scanned images of maps are processed in order to extract relevant geographic information from printed coordinate pairs. The meaningful information is then transformed into georeferencing information for each single map sheet, and the complete set is compiled to produce a graphical index sheet for the map series along with relevant metadata. The whole process is fully automated and trained to attain maximum effectivity and throughput.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ RRL2011a Serial 1765  
Permanent link to this record
 

 
Author Rui Zhang; Yongsheng Zhou; Qianyi Jiang; Qi Song; Nan Li; Kai Zhou; Lei Wang; Dong Wang; Minghui Liao; Mingkun Yang; Xiang Bai; Baoguang Shi; Dimosthenis Karatzas; Shijian Lu; CV Jawahar edit   pdf
url  doi
openurl 
  Title ICDAR 2019 Robust Reading Challenge on Reading Chinese Text on Signboard Type Conference Article
  Year 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1577-1581  
  Keywords  
  Abstract (up) Chinese scene text reading is one of the most challenging problems in computer vision and has attracted great interest. Different from English text, Chinese has more than 6000 commonly used characters and Chinesecharacters can be arranged in various layouts with numerous fonts. The Chinese signboards in street view are a good choice for Chinese scene text images since they have different backgrounds, fonts and layouts. We organized a competition called ICDAR2019-ReCTS, which mainly focuses on reading Chinese text on signboard. This report presents the final results of the competition. A large-scale dataset of 25,000 annotated signboard images, in which all the text lines and characters are annotated with locations and transcriptions, were released. Four tasks, namely character recognition, text line recognition, text line detection and end-to-end recognition were set up. Besides, considering the Chinese text ambiguity issue, we proposed a multi ground truth (multi-GT) evaluation method to make evaluation fairer. The competition started on March 1, 2019 and ended on April 30, 2019. 262 submissions from 46 teams are received. Most of the participants come from universities, research institutes, and tech companies in China. There are also some participants from the United States, Australia, Singapore, and Korea. 21 teams submit results for Task 1, 23 teams submit results for Task 2, 24 teams submit results for Task 3, and 13 teams submit results for Task 4.  
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.129; 600.121 Approved no  
  Call Number Admin @ si @ LZZ2019 Serial 3335  
Permanent link to this record
 

 
Author Dena Bazazian; Raul Gomez; Anguelos Nicolaou; Lluis Gomez; Dimosthenis Karatzas; Andrew Bagdanov edit   pdf
url  openurl
  Title Fast: Facilitated and accurate scene text proposals through fcn guided pruning Type Journal Article
  Year 2019 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 119 Issue Pages 112-120  
  Keywords  
  Abstract (up) Class-specific text proposal algorithms can efficiently reduce the search space for possible text object locations in an image. In this paper we combine the Text Proposals algorithm with Fully Convolutional Networks to efficiently reduce the number of proposals while maintaining the same recall level and thus gaining a significant speed up. Our experiments demonstrate that such text proposal approaches yield significantly higher recall rates than state-of-the-art text localization techniques, while also producing better-quality localizations. Our results on the ICDAR 2015 Robust Reading Competition (Challenge 4) and the COCO-text datasets show that, when combined with strong word classifiers, this recall margin leads to state-of-the-art results in end-to-end scene text recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.084; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ BGN2019 Serial 3342  
Permanent link to this record
 

 
Author Chenyang Fu; Kaida Xiao; Dimosthenis Karatzas; Sophie Wuerger edit  doi
openurl 
  Title Investigation of Unique Hue Setting Changes with Ageing Type Journal Article
  Year 2011 Publication Chinese Optics Letters Abbreviated Journal COL  
  Volume 9 Issue 5 Pages 053301-1-5  
  Keywords  
  Abstract (up) Clromatic sensitivity along the protan, deutan, and tritan lines and the loci of the unique hues (red, green, yellow, blue) for a very large sample (n = 185) of colour-normal observers ranging from 18 to 75 years of age are assessed. Visual judgments are obtained under normal viewing conditions using colour patches on self-luminous display under controlled adaptation conditions. Trivector discrimination thresholds show an increase as a function of age along the protan, deutan, and tritan axes, with the largest increase present along the tritan line, less pronounced shifts in unique hue settings are also observed. Based on the chromatic (protan, deutan, tritan) thresholds and using scaled cone signals, we predict the unique hue changes with ageing. A dependency on age for unique red and unique yellow for predicted hue angle is found. We conclude that the chromatic sensitivity deteriorates significantly with age, whereas the appearance of unique hues is much less affected, remaining almost constant despite the known changes in the ocular media.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ XFW2011 Serial 1818  
Permanent link to this record
 

 
Author Christophe Rigaud; Dimosthenis Karatzas; Joost Van de Weijer; Jean-Christophe Burie; Jean-Marc Ogier edit   pdf
doi  openurl
  Title An active contour model for speech balloon detection in comics Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1240-1244  
  Keywords  
  Abstract (up) Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent comic book understanding would enable a variety of new applications, including content-based retrieval and content retargeting. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. Few studies have been done in this direction. In this work we detail a novel approach for closed and non-closed speech balloon localization in scanned comic book pages, an essential step towards a fully automatic comic book understanding. The approach is compared with existing methods for closed balloon localization found in the literature and results are presented.  
  Address washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; CIC; 600.056 Approved no  
  Call Number Admin @ si @ RKW2013a Serial 2260  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: