toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Oriol Ramos Terrades; N. Serrano; Albert Gordo; Ernest Valveny; Alfons Juan-Ciscar edit  doi
openurl 
  Title Interactive-predictive detection of handwritten text blocks Type Conference Article
  Year 2010 Publication 17th Document Recognition and Retrieval Conference, part of the IS&T-SPIE Electronic Imaging Symposium Abbreviated Journal  
  Volume 7534 Issue Pages 75340Q–75340Q–10  
  Keywords  
  Abstract (up) A method for text block detection is introduced for old handwritten documents. The proposed method takes advantage of sequential book structure, taking into account layout information from pages previously transcribed. This glance at the past is used to predict the position of text blocks in the current page with the help of conventional layout analysis methods. The method is integrated into the GIDOC prototype: a first attempt to provide integrated support for interactive-predictive page layout analysis, text line detection and handwritten text transcription. Results are given in a transcription task on a 764-page Spanish manuscript from 1891.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DRR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ TSG2010 Serial 1479  
Permanent link to this record
 

 
Author D. Perez; L. Tarazon; N. Serrano; F.M. Castro; Oriol Ramos Terrades; A. Juan edit  doi
isbn  openurl
  Title The GERMANA Database Type Conference Article
  Year 2009 Publication 10th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 301-305  
  Keywords  
  Abstract (up) A new handwritten text database, GERMANA, is presented to facilitate empirical comparison of different approaches to text line extraction and off-line handwriting recognition. GERMANA is the result of digitising and annotating a 764-page Spanish manuscript from 1891, in which most pages only contain nearly calligraphed text written on ruled sheets of well-separated lines. To our knowledge, it is the first publicly available database for handwriting research, mostly written in Spanish and comparable in size to standard databases. Due to its sequential book structure, it is also well-suited for realistic assessment of interactive handwriting recognition systems. To provide baseline results for reference in future studies, empirical results are also reported, using standard techniques and tools for preprocessing, feature extraction, HMM-based image modelling, and language modelling.  
  Address Barcelona; Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN 978-1-4244-4500-4 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ PTS2009 Serial 1870  
Permanent link to this record
 

 
Author Josep Llados; Horst Bunke; Enric Marti edit   pdf
openurl 
  Title Structural Recognition of hand drawn floor plans Type Conference Article
  Year 1996 Publication VI National Symposium on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords Rotational Symmetry; Reflectional Symmetry; String Matching.  
  Abstract (up) A system to recognize hand drawn architectural drawings in a CAD environment has been deve- loped. In this paper we focus on its high level interpretation module. To interpret a floor plan, the system must identify several building elements, whose description is stored in a library of pat- terns, as well as their spatial relationships. We propose a structural approach based on subgraph isomorphism techniques to obtain a high-level interpretation of the document. The vectorized input document and the patterns to be recognized are represented by attributed graphs. Discrete relaxation techniques (AC4 algorithm) have been applied to develop the matching algorithm. The process has been divided in three steps: node labeling, local consistency and global consistency verification. The hand drawn creation causes disturbed line drawings with several accuracy errors, which must be taken into account. Here we have identified them and the AC4 algorithm has been adapted to manage them.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cordoba Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ LIM1995 Serial 1565  
Permanent link to this record
 

 
Author Antonio Lopez; Atsushi Imiya; Tomas Pajdla; Jose Manuel Alvarez edit  isbn
openurl 
  Title Computer Vision in Vehicle Technology: Land, Sea & Air Type Book Whole
  Year Publication Computer Vision in Vehicle Technology: Land, Sea & Air Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (up) A unified view of the use of computer vision technology for different types of vehicles

Computer Vision in Vehicle Technology focuses on computer vision as on-board technology, bringing together fields of research where computer vision is progressively penetrating: the automotive sector, unmanned aerial and underwater vehicles. It also serves as a reference for researchers of current developments and challenges in areas of the application of computer vision, involving vehicles such as advanced driver assistance (pedestrian detection, lane departure warning, traffic sign recognition), autonomous driving and robot navigation (with visual simultaneous localization and mapping) or unmanned aerial vehicles (obstacle avoidance, landscape classification and mapping, fire risk assessment).

The overall role of computer vision for the navigation of different vehicles, as well as technology to address on-board applications, is analysed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-118-86807-2 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ LIP2017b Serial 3049  
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados edit  url
doi  isbn
openurl 
  Title Multilevel Analysis of Attributed Graphs for Explicit Graph Embedding in Vector Spaces Type Book Chapter
  Year 2013 Publication Graph Embedding for Pattern Analysis Abbreviated Journal  
  Volume Issue Pages 1-26  
  Keywords  
  Abstract (up) Ability to recognize patterns is among the most crucial capabilities of human beings for their survival, which enables them to employ their sophisticated neural and cognitive systems [1], for processing complex audio, visual, smell, touch, and taste signals. Man is the most complex and the best existing system of pattern recognition. Without any explicit thinking, we continuously compare, classify, and identify huge amount of signal data everyday [2], starting from the time we get up in the morning till the last second we fall asleep. This includes recognizing the face of a friend in a crowd, a spoken word embedded in noise, the proper key to lock the door, smell of coffee, the voice of a favorite singer, the recognition of alphabetic characters, and millions of more tasks that we perform on regular basis.  
  Address  
  Corporate Author Thesis  
  Publisher Springer New York Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4614-4456-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ LRL2013b Serial 2271  
Permanent link to this record
 

 
Author Debora Gil; Oriol Ramos Terrades; Raquel Perez edit  doi
openurl 
  Title Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution Type Book Chapter
  Year 2021 Publication Extended Abstracts GEOMVAP 2019, Trends in Mathematics 15 Abbreviated Journal  
  Volume 15 Issue Pages 89–93  
  Keywords  
  Abstract (up) Abnormalities in radiomic measures correlate to genomic alterations prone to alter the outcome of personalized anti-cancer treatments. TOPiomics is a new method for the early detection of variations in tumor imaging phenotype from a topological structure in multi-view radiomic spaces.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Nature Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; DAG; 600.120; 600.145; 600.139 Approved no  
  Call Number Admin @ si @ GRP2021 Serial 3594  
Permanent link to this record
 

 
Author Anton Cervantes; Gemma Sanchez; Josep Llados; Agnes Borras; Ana Rodriguez edit   pdf
url  openurl
  Title Biometric Recognition Based on Line Shape Descriptors Type Book Chapter
  Year 2006 Publication Lecture Notes in Computer Science Abbreviated Journal  
  Volume 3926 Issue Pages 346–357,  
  Keywords  
  Abstract (up) Abstract. In this paper we propose biometric descriptors inspired by shape signatures traditionally used in graphics recognition approaches. In particular several methods based on line shape descriptors used to iden- tify newborns from the biometric information of the ears are developed. The process steps are the following: image acquisition, ear segmentation, ear normalization, feature extraction and identification. Several shape signatures are defined from contour images. These are formulated in terms of zoning and contour crossings descriptors. Experimental results are presented to demonstrate the effectiveness of the used techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ CSL2006 Serial 685  
Permanent link to this record
 

 
Author Salvatore Tabbone; Oriol Ramos Terrades edit  doi
isbn  openurl
  Title An Overview of Symbol Recognition Type Book Chapter
  Year 2014 Publication Handbook of Document Image Processing and Recognition Abbreviated Journal  
  Volume D Issue Pages 523-551  
  Keywords Pattern recognition; Shape descriptors; Structural descriptors; Symbolrecognition; Symbol spotting  
  Abstract (up) According to the Cambridge Dictionaries Online, a symbol is a sign, shape, or object that is used to represent something else. Symbol recognition is a subfield of general pattern recognition problems that focuses on identifying, detecting, and recognizing symbols in technical drawings, maps, or miscellaneous documents such as logos and musical scores. This chapter aims at providing the reader an overview of the different existing ways of describing and recognizing symbols and how the field has evolved to attain a certain degree of maturity.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-85729-858-4 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ TaT2014 Serial 2489  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit   pdf
doi  openurl
  Title Learning of structural descriptions of graphic symbols using deformable template matching Type Conference Article
  Year 2001 Publication Proc. Sixth Int Document Analysis and Recognition Conf Abbreviated Journal  
  Volume Issue Pages 455-459  
  Keywords  
  Abstract (up) Accurate symbol recognition in graphic documents needs an accurate representation of the symbols to be recognized. If structural approaches are used for recognition, symbols have to be described in terms of their shape, using structural relationships among extracted features. Unlike statistical pattern recognition, in structural methods, symbols are usually manually defined from expertise knowledge, and not automatically infered from sample images. In this work we explain one approach to learn from examples a representative structural description of a symbol, thus providing better information about shape variability. The description of a symbol is based on a probabilistic model. It consists of a set of lines described by the mean and the variance of line parameters, respectively providing information about the model of the symbol, and its shape variability. The representation of each image in the sample set as a set of lines is achieved using deformable template matching.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ VMA2001 Serial 1654  
Permanent link to this record
 

 
Author Mohammed Al Rawi; Ernest Valveny edit   pdf
url  doi
openurl 
  Title Compact and Efficient Multitask Learning in Vision, Language and Speech Type Conference Article
  Year 2019 Publication IEEE International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 2933-2942  
  Keywords  
  Abstract (up) Across-domain multitask learning is a challenging area of computer vision and machine learning due to the intra-similarities among class distributions. Addressing this problem to cope with the human cognition system by considering inter and intra-class categorization and recognition complicates the problem even further. We propose in this work an effective holistic and hierarchical learning by using a text embedding layer on top of a deep learning model. We also propose a novel sensory discriminator approach to resolve the collisions between different tasks and domains. We then train the model concurrently on textual sentiment analysis, speech recognition, image classification, action recognition from video, and handwriting word spotting of two different scripts (Arabic and English). The model we propose successfully learned different tasks across multiple domains.  
  Address Seul; Korea; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ RaV2019 Serial 3365  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: