|
Records |
Links |
|
Author |
Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny |
|
|
Title |
Wall Patch-Based Segmentation in Architectural Floorplans |
Type |
Conference Article |
|
Year |
2011 |
Publication |
11th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1270-1274 |
|
|
Keywords |
|
|
|
Abstract |
Segmentation of architectural floor plans is a challenging task, mainly because of the large variability in the notation between different plans. In general, traditional techniques, usually based on analyzing and grouping structural primitives obtained by vectorization, are only able to handle a reduced range of similar notations. In this paper we propose an alternative patch-based segmentation approach working at pixel level, without need of vectorization. The image is divided into a set of patches and a set of features is extracted for every patch. Then, each patch is assigned to a visual word of a previously learned vocabulary and given a probability of belonging to each class of objects. Finally, a post-process assigns the final label for every pixel. This approach has been applied to the detection of walls on two datasets of architectural floor plans with different notations, achieving high accuracy rates. |
|
|
Address |
Beiging, China |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
978-0-7695-4520-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ HMS2011a |
Serial |
1792 |
|
Permanent link to this record |
|
|
|
|
Author |
Raul Gomez; Lluis Gomez; Jaume Gibert; Dimosthenis Karatzas |
|
|
Title |
Self-Supervised Learning from Web Data for Multimodal Retrieval |
Type |
Book Chapter |
|
Year |
2019 |
Publication |
Multi-Modal Scene Understanding Book |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
279-306 |
|
|
Keywords |
self-supervised learning; webly supervised learning; text embeddings; multimodal retrieval; multimodal embedding |
|
|
Abstract |
Self-Supervised learning from multimodal image and text data allows deep neural networks to learn powerful features with no need of human annotated data. Web and Social Media platforms provide a virtually unlimited amount of this multimodal data. In this work we propose to exploit this free available data to learn a multimodal image and text embedding, aiming to leverage the semantic knowledge learnt in the text domain and transfer it to a visual model for semantic image retrieval. We demonstrate that the proposed pipeline can learn from images with associated text without supervision and analyze the semantic structure of the learnt joint image and text embeddingspace. Weperformathoroughanalysisandperformancecomparisonoffivedifferentstateof the art text embeddings in three different benchmarks. We show that the embeddings learnt with Web and Social Media data have competitive performances over supervised methods in the text basedimageretrievaltask,andweclearlyoutperformstateoftheartintheMIRFlickrdatasetwhen training in the target data. Further, we demonstrate how semantic multimodal image retrieval can be performed using the learnt embeddings, going beyond classical instance-level retrieval problems. Finally, we present a new dataset, InstaCities1M, composed by Instagram images and their associated texts that can be used for fair comparison of image-text embeddings. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.129; 601.338; 601.310 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GGG2019 |
Serial |
3266 |
|
Permanent link to this record |
|
|
|
|
Author |
Marwa Dhiaf; Mohamed Ali Souibgui; Kai Wang; Yuyang Liu; Yousri Kessentini; Alicia Fornes; Ahmed Cheikh Rouhou |
|
|
Title |
CSSL-MHTR: Continual Self-Supervised Learning for Scalable Multi-script Handwritten Text Recognition |
Type |
Miscellaneous |
|
Year |
2023 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Self-supervised learning has recently emerged as a strong alternative in document analysis. These approaches are now capable of learning high-quality image representations and overcoming the limitations of supervised methods, which require a large amount of labeled data. However, these methods are unable to capture new knowledge in an incremental fashion, where data is presented to the model sequentially, which is closer to the realistic scenario. In this paper, we explore the potential of continual self-supervised learning to alleviate the catastrophic forgetting problem in handwritten text recognition, as an example of sequence recognition. Our method consists in adding intermediate layers called adapters for each task, and efficiently distilling knowledge from the previous model while learning the current task. Our proposed framework is efficient in both computation and memory complexity. To demonstrate its effectiveness, we evaluate our method by transferring the learned model to diverse text recognition downstream tasks, including Latin and non-Latin scripts. As far as we know, this is the first application of continual self-supervised learning for handwritten text recognition. We attain state-of-the-art performance on English, Italian and Russian scripts, whilst adding only a few parameters per task. The code and trained models will be publicly available. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ DSW2023 |
Serial |
3851 |
|
Permanent link to this record |
|
|
|
|
Author |
Lei Kang; Pau Riba; Mauricio Villegas; Alicia Fornes; Marçal Rusiñol |
|
|
Title |
Candidate Fusion: Integrating Language Modelling into a Sequence-to-Sequence Handwritten Word Recognition Architecture |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
112 |
Issue |
|
Pages |
107790 |
|
|
Keywords |
|
|
|
Abstract |
Sequence-to-sequence models have recently become very popular for tackling
handwritten word recognition problems. However, how to effectively integrate an external language model into such recognizer is still a challenging
problem. The main challenge faced when training a language model is to
deal with the language model corpus which is usually different to the one
used for training the handwritten word recognition system. Thus, the bias
between both word corpora leads to incorrectness on the transcriptions, providing similar or even worse performances on the recognition task. In this
work, we introduce Candidate Fusion, a novel way to integrate an external
language model to a sequence-to-sequence architecture. Moreover, it provides suggestions from an external language knowledge, as a new input to
the sequence-to-sequence recognizer. Hence, Candidate Fusion provides two
improvements. On the one hand, the sequence-to-sequence recognizer has
the flexibility not only to combine the information from itself and the language model, but also to choose the importance of the information provided
by the language model. On the other hand, the external language model
has the ability to adapt itself to the training corpus and even learn the
most commonly errors produced from the recognizer. Finally, by conducting
comprehensive experiments, the Candidate Fusion proves to outperform the
state-of-the-art language models for handwritten word recognition tasks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.140; 601.302; 601.312; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRV2021 |
Serial |
3343 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Sergio Escalera; Josep Llados; Ernest Valveny |
|
|
Title |
Symbol Classification using Dynamic Aligned Shape Descriptor |
Type |
Conference Article |
|
Year |
2010 |
Publication |
20th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1957–1960 |
|
|
Keywords |
|
|
|
Abstract |
Shape representation is a difficult task because of several symbol distortions, such as occlusions, elastic deformations, gaps or noise. In this paper, we propose a new descriptor and distance computation for coping with the problem of symbol recognition in the domain of Graphical Document Image Analysis. The proposed D-Shape descriptor encodes the arrangement information of object parts in a circular structure, allowing different levels of distortion. The classification is performed using a cyclic Dynamic Time Warping based method, allowing distortions and rotation. The methodology has been validated on different data sets, showing very high recognition rates. |
|
|
Address |
Istanbul (Turkey) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
978-1-4244-7542-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; HUPBA; MILAB |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ FEL2010 |
Serial |
1421 |
|
Permanent link to this record |
|
|
|
|
Author |
Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados |
|
|
Title |
Embedding Document Structure to Bag-of-Words through Pair-wise Stable Key-regions |
Type |
Conference Article |
|
Year |
2014 |
Publication |
22nd International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
2903 - 2908 |
|
|
Keywords |
|
|
|
Abstract |
Since the document structure carries valuable discriminative information, plenty of efforts have been made for extracting and understanding document structure among which layout analysis approaches are the most commonly used. In this paper, Distance Transform based MSER (DTMSER) is employed to efficiently extract the document structure as a dendrogram of key-regions which roughly correspond to structural elements such as characters, words and paragraphs. Inspired by the Bag
of Words (BoW) framework, we propose an efficient method for structural document matching by representing the document image as a histogram of key-region pairs encoding structural relationships.
Applied to the scenario of document image retrieval, experimental results demonstrate a remarkable improvement when comparing the proposed method with typical BoW and pyramidal BoW methods. |
|
|
Address |
Stockholm; Sweden; August 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.056; 600.061; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRK2014b |
Serial |
2497 |
|
Permanent link to this record |
|
|
|
|
Author |
Joan Mas |
|
|
Title |
A Syntactic Pattern Recognition Approach based on a Distribution Tolerant Adjacency Grammar and a Spatial Indexed Parser. Application to Sketched Document Recognition |
Type |
Book Whole |
|
Year |
2010 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Sketch recognition is a discipline which has gained an increasing interest in the last
20 years. This is due to the appearance of new devices such as PDA, Tablet PC’s
or digital pen & paper protocols. From the wide range of sketched documents we
focus on those that represent structured documents such as: architectural floor-plans,
engineering drawing, UML diagrams, etc. To recognize and understand these kinds
of documents, first we have to recognize the different compounding symbols and then
we have to identify the relations between these elements. From the way that a sketch
is captured, there are two categories: on-line and off-line. On-line input modes refer
to draw directly on a PDA or a Tablet PC’s while off-line input modes refer to scan
a previously drawn sketch.
This thesis is an overlapping of three different areas on Computer Science: Pattern
Recognition, Document Analysis and Human-Computer Interaction. The aim of this
thesis is to interpret sketched documents independently on whether they are captured
on-line or off-line. For this reason, the proposed approach should contain the following
features. First, as we are working with sketches the elements present in our input
contain distortions. Second, as we would work in on-line or off-line input modes, the
order in the input of the primitives is indifferent. Finally, the proposed method should
be applied in real scenarios, its response time must be slow.
To interpret a sketched document we propose a syntactic approach. A syntactic
approach is composed of two correlated components: a grammar and a parser. The
grammar allows describing the different elements on the document as well as their
relations. The parser, given a document checks whether it belongs to the language
generated by the grammar or not. Thus, the grammar should be able to cope with
the distortions appearing on the instances of the elements. Moreover, it would be
necessary to define a symbol independently of the order of their primitives. Concerning to the parser when analyzing 2D sentences, it does not assume an order in the
primitives. Then, at each new primitive in the input, the parser searches among the
previous analyzed symbols candidates to produce a valid reduction.
Taking into account these features, we have proposed a grammar based on Adjacency Grammars. This kind of grammars defines their productions as a multiset
of symbols rather than a list. This allows describing a symbol without an order in
their components. To cope with distortion we have proposed a distortion model.
This distortion model is an attributed estimated over the constraints of the grammar and passed through the productions. This measure gives an idea on how far is the
symbol from its ideal model. In addition to the distortion on the constraints other
distortions appear when working with sketches. These distortions are: overtracing,
overlapping, gaps or spurious strokes. Some grammatical productions have been defined to cope with these errors. Concerning the recognition, we have proposed an
incremental parser with an indexation mechanism. Incremental parsers analyze the
input symbol by symbol given a response to the user when a primitive is analyzed.
This makes incremental parser suitable to work in on-line as well as off-line input
modes. The parser has been adapted with an indexation mechanism based on a spatial division. This indexation mechanism allows setting the primitives in the space
and reducing the search to a neighbourhood.
A third contribution is a grammatical inference algorithm. This method given a
set of symbols captures the production describing it. In the field of formal languages,
different approaches has been proposed but in the graphical domain not so much work
is done in this field. The proposed method is able to capture the production from
a set of symbol although they are drawn in different order. A matching step based
on the Haussdorff distance and the Hungarian method has been proposed to match
the primitives of the different symbols. In addition the proposed approach is able to
capture the variability in the parameters of the constraints.
From the experimental results, we may conclude that we have proposed a robust
approach to describe and recognize sketches. Moreover, the addition of new symbols
to the alphabet is not restricted to an expert. Finally, the proposed approach has
been used in two real scenarios obtaining a good performance. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
Ediciones Graficas Rey |
Place of Publication |
|
Editor |
Gemma Sanchez;Josep Llados |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-937261-4-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ Mas2010 |
Serial |
1334 |
|
Permanent link to this record |
|
|
|
|
Author |
Jean-Christophe Burie; J. Chazalon; M. Coustaty; S. Eskenazi; Muhammad Muzzamil Luqman; M. Mehri; Nibal Nayef; Jean-Marc Ogier; S. Prum; Marçal Rusiñol |
|
|
Title |
ICDAR2015 Competition on Smartphone Document Capture and OCR (SmartDoc) |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1161 - 1165 |
|
|
Keywords |
|
|
|
Abstract |
Smartphones are enabling new ways of capture,
hence arises the need for seamless and reliable acquisition and
digitization of documents, in order to convert them to editable,
searchable and a more human-readable format. Current stateof-the-art
works lack databases and baseline benchmarks for
digitizing mobile captured documents. We have organized a
competition for mobile document capture and OCR in order to
address this issue. The competition is structured into two independent
challenges: smartphone document capture, and smartphone
OCR. This report describes the datasets for both challenges
along with their ground truth, details the performance evaluation
protocols which we used, and presents the final results of the
participating methods. In total, we received 13 submissions: 8
for challenge-I, and 5 for challenge-2. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 601.223; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BCC2015 |
Serial |
2681 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Umapada Pal; Alicia Fornes; Josep Llados |
|
|
Title |
An Efficient Staff Removal Technique from Printed Musical Documents |
Type |
Conference Article |
|
Year |
2010 |
Publication |
20th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1965–1968 |
|
|
Keywords |
|
|
|
Abstract |
Staff removal is an important preprocessing step of the Optical Music Recognition (OMR). The process aims to remove the stafflines from a musical document and retain only the musical symbols, later these symbols are used effectively to identify the music information. This paper proposes a simple but robust method to remove stafflines from printed musical scores. In the proposed methodology we have considered a staffline segment as a horizontal linkage of vertical black runs with uniform height. We have used the neighbouring properties of a staffline segment to validate it as a true segment. We have considered the dataset along with the deformations described in for evaluation purpose. From experimentation we have got encouraging results. |
|
|
Address |
Istanbul (Turkey) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
978-1-4244-7542-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ DPF2010 |
Serial |
1420 |
|
Permanent link to this record |
|
|
|
|
Author |
Volkmar Frinken; Markus Baumgartner; Andreas Fischer; Horst Bunke |
|
|
Title |
Semi-Supervised Learning for Cursive Handwriting Recognition using Keyword Spotting |
Type |
Conference Article |
|
Year |
2012 |
Publication |
13th International Conference on Frontiers in Handwriting Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
49-54 |
|
|
Keywords |
|
|
|
Abstract |
State-of-the-art handwriting recognition systems are learning-based systems that require large sets of training data. The creation of training data, and consequently the creation of a well-performing recognition system, requires therefore a substantial amount of human work. This can be reduced with semi-supervised learning, which uses unlabeled text lines for training as well. Current approaches estimate the correct transcription of the unlabeled data via handwriting recognition which is not only extremely demanding as far as computational costs are concerned but also requires a good model of the target language. In this paper, we propose a different approach that makes use of keyword spotting, which is significantly faster and does not need any language model. In a set of experiments we demonstrate its superiority over existing approaches. |
|
|
Address |
Bari, Italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
10.1109/ICFHR.2012.268 |
ISBN |
978-1-4673-2262-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICFHR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ FBF2012 |
Serial |
2055 |
|
Permanent link to this record |