toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Marçal Rusiñol; David Aldavert; Dimosthenis Karatzas; Ricardo Toledo; Josep Llados edit  doi
isbn  openurl
  Title Interactive Trademark Image Retrieval by Fusing Semantic and Visual Content. Advances in Information Retrieval Type Conference Article
  Year 2011 Publication 33rd European Conference on Information Retrieval Abbreviated Journal  
  Volume 6611 Issue Pages 314-325  
  Keywords  
  Abstract In this paper we propose an efficient queried-by-example retrieval system which is able to retrieve trademark images by similarity from patent and trademark offices' digital libraries. Logo images are described by both their semantic content, by means of the Vienna codes, and their visual contents, by using shape and color as visual cues. The trademark descriptors are then indexed by a locality-sensitive hashing data structure aiming to perform approximate k-NN search in high dimensional spaces in sub-linear time. The resulting ranked lists are combined by using the Condorcet method and a relevance feedback step helps to iteratively revise the query and refine the obtained results. The experiments demonstrate the effectiveness and efficiency of this system on a realistic and large dataset.  
  Address Dublin, Ireland  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Berlin Editor P. Clough; C. Foley; C. Gurrin; G.J.F. Jones; W. Kraaij; H. Lee; V. Murdoch  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-20160-8 Medium  
  Area Expedition Conference ECIR  
  Notes DAG; RV;ADAS Approved no  
  Call Number Admin @ si @ RAK2011 Serial 1737  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Umapada Pal edit  doi
isbn  openurl
  Title A Bag-of-Paths Based Serialized Subgraph Matching for Symbol Spotting in Line Drawings Type Conference Article
  Year 2011 Publication 5th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 6669 Issue Pages 620-627  
  Keywords  
  Abstract In this paper we propose an error tolerant subgraph matching algorithm based on bag-of-paths for solving the problem of symbol spotting in line drawings. Bag-of-paths is a factorized representation of graphs where the factorization is done by considering all the acyclic paths between each pair of connected nodes. Similar paths within the whole collection of documents are clustered and organized in a lookup table for efficient indexing. The lookup table contains the index key of each cluster and the corresponding list of locations as a single entry. The mean path of each of the clusters serves as the index key for each table entry. The spotting method is then formulated by a spatial voting scheme to the list of locations of the paths that are decided in terms of search of similar paths that compose the query symbol. Efficient indexing of common substructures helps to reduce the computational burden of usual graph based methods. The proposed method can also be seen as a way to serialize graphs which allows to reduce the complexity of the subgraph isomorphism. We have encoded the paths in terms of both attributed strings and turning functions, and presented a comparative results between them within the symbol spotting framework. Experimentations for matching different shape silhouettes are also reported and the method has been proved to work in noisy environment also.  
  Address Las Palmas de Gran Canaria. Spain  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Berlin Editor Jordi Vitria; Joao Miguel Raposo; Mario Hernandez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-21256-7 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG Approved no  
  Call Number Admin @ si @ DLP2011a Serial 1738  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit  doi
isbn  openurl
  Title Dimensionality Reduction for Graph of Words Embedding Type Conference Article
  Year 2011 Publication 8th IAPR-TC-15 International Workshop. Graph-Based Representations in Pattern Recognition Abbreviated Journal  
  Volume 6658 Issue Pages 22-31  
  Keywords  
  Abstract The Graph of Words Embedding consists in mapping every graph of a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. While it shows good properties in classification problems, it suffers from high dimensionality and sparsity. These two issues are addressed in this article. Two well-known techniques for dimensionality reduction, kernel principal component analysis (kPCA) and independent component analysis (ICA), are applied to the embedded graphs. We discuss their performance compared to the classification of the original vectors on three different public databases of graphs.  
  Address Münster, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Xiaoyi Jiang; Miquel Ferrer; Andrea Torsello  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-20843-0 Medium  
  Area Expedition Conference GbRPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2011a Serial 1743  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit  doi
isbn  openurl
  Title Vocabulary Selection for Graph of Words Embedding Type Conference Article
  Year 2011 Publication 5th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 6669 Issue Pages 216-223  
  Keywords  
  Abstract The Graph of Words Embedding consists in mapping every graph in a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. It has been shown to perform well for graphs with discrete label alphabets. In this paper we extend the methodology to graphs with n-dimensional continuous attributes by selecting node representatives. We propose three different discretization procedures for the attribute space and experimentally evaluate the dependence on both the selector and the number of node representatives. In the context of graph classification, the experimental results reveal that on two out of three public databases the proposed extension achieves superior performance over a standard reference system.  
  Address Las Palmas de Gran Canaria. Spain  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Berlin Editor Vitria, Jordi; Sanches, João Miguel Raposo; Hernández, Mario  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-21256-7 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2011b Serial 1744  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Oriol Ramos Terrades; Horst Bunke edit  doi
isbn  openurl
  Title Multiple Classifiers for Graph of Words Embedding Type Conference Article
  Year 2011 Publication 10th International Conference on Multiple Classifier Systems Abbreviated Journal  
  Volume 6713 Issue Pages 36-45  
  Keywords  
  Abstract During the last years, there has been an increasing interest in applying the multiple classifier framework to the domain of structural pattern recognition. Constructing base classifiers when the input patterns are graph based representations is not an easy problem. In this work, we make use of the graph embedding methodology in order to construct different feature vector representations for graphs. The graph of words embedding assigns a feature vector to every graph by counting unary and binary relations between node representatives and combining these pieces of information into a single vector. Selecting different node representatives leads to different vectorial representations and therefore to different base classifiers that can be combined. We experimentally show how this methodology significantly improves the classification of graphs with respect to single base classifiers.  
  Address Napoles, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Carlo Sansone; Josef Kittler; Fabio Roli  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-21556-8 Medium  
  Area Expedition Conference MCS  
  Notes DAG Approved no  
  Call Number Admin @ si @GVR2011 Serial 1745  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Umapada Pal edit  doi
isbn  openurl
  Title Bag-of-GraphPaths Descriptors for Symbol Recognition and Spotting in Line Drawings Type Conference Article
  Year 2011 Publication In proceedings of 9th IAPR Workshop on Graphic Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Graphical symbol recognition and spotting recently have become an important research activity. In this work we present a descriptor for symbols, especially for line drawings. The descriptor is based on the graph representation of graphical objects. We construct graphs from the vectorized information of the binarized images, where the critical points detected by the vectorization algorithm are considered as nodes and the lines joining them are considered as edges. Graph paths between two nodes in a graph are the finite sequences of nodes following the order from the starting to the final node. The occurrences of different graph paths in a given graph is an important feature, as they capture the geometrical and structural attributes of a graph. So the graph representing a symbol can efficiently be represent by the occurrences of its different paths. Their occurrences in a symbol can be obtained in terms of a histogram counting the number of some fixed prototype paths, we call the histogram as the Bag-of-GraphPaths (BOGP). These BOGP histograms are used as a descriptor to measure the distance among the symbols in vector space. We use the descriptor for three applications, they are: (1) classification of the graphical symbols, (2) spotting of the architectural symbols on floorplans, (3) classification of the historical handwritten words.  
  Address Seoul, Korea  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-36823-3 Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number Admin @ si @ DLP2011c Serial 1825  
Permanent link to this record
 

 
Author L.Tarazon; D. Perez; N. Serrano; V. Alabau; Oriol Ramos Terrades; A. Sanchis; A. Juan edit  doi
isbn  openurl
  Title Confidence Measures for Error Correction in Interactive Transcription of Handwritten Text Type Conference Article
  Year 2009 Publication 15th International Conference on Image Analysis and Processing Abbreviated Journal  
  Volume 5716 Issue Pages 567-574  
  Keywords  
  Abstract An effective approach to transcribe old text documents is to follow an interactive-predictive paradigm in which both, the system is guided by the human supervisor, and the supervisor is assisted by the system to complete the transcription task as efficiently as possible. In this paper, we focus on a particular system prototype called GIDOC, which can be seen as a first attempt to provide user-friendly, integrated support for interactive-predictive page layout analysis, text line detection and handwritten text transcription. More specifically, we focus on the handwriting recognition part of GIDOC, for which we propose the use of confidence measures to guide the human supervisor in locating possible system errors and deciding how to proceed. Empirical results are reported on two datasets showing that a word error rate not larger than a 10% can be achieved by only checking the 32% of words that are recognised with less confidence.  
  Address Vietri sul Mare, Italy  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-04145-7 Medium  
  Area Expedition Conference ICIAP  
  Notes DAG Approved no  
  Call Number Admin @ si @ TPS2009 Serial 1871  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Horst Bunke; Umapada Pal edit   pdf
doi  isbn
openurl 
  Title A Product Graph Based Method for Dual Subgraph Matching Applied to Symbol Spotting Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages 7-11  
  Keywords Product graph; Dual edge graph; Subgraph matching; Random walks; Graph kernel  
  Abstract Product graph has been shown as a way for matching subgraphs. This paper reports the extension of the product graph methodology for subgraph matching applied to symbol spotting in graphical documents. Here we focus on the two major limitations of the previous version of the algorithm: (1) spurious nodes and edges in the graph representation and (2) inefficient node and edge attributes. To deal with noisy information of vectorized graphical documents, we consider a dual edge graph representation on the original graph representing the graphical information and the product graph is computed between the dual edge graphs of the pattern graph and the target graph. The dual edge graph with redundant edges is helpful for efficient and tolerating encoding of the structural information of the graphical documents. The adjacency matrix of the product graph locates the pair of similar edges of two operand graphs and exponentiating the adjacency matrix finds similar random walks of greater lengths. Nodes joining similar random walks between two graphs are found by combining different weighted exponentials of adjacency matrices. An experimental investigation reveals that the recall obtained by this approach is quite encouraging.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Bart Lamiroy; Jean-Marc Ogier  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ DLB2014 Serial 2698  
Permanent link to this record
 

 
Author Francisco Alvaro; Francisco Cruz; Joan Andreu Sanchez; Oriol Ramos Terrades; Jose Miguel Bemedi edit   pdf
doi  isbn
openurl 
  Title Page Segmentation of Structured Documents Using 2D Stochastic Context-Free Grammars Type Conference Article
  Year 2013 Publication 6th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 7887 Issue Pages 133-140  
  Keywords  
  Abstract In this paper we define a bidimensional extension of Stochastic Context-Free Grammars for page segmentation of structured documents. Two sets of text classification features are used to perform an initial classification of each zone of the page. Then, the page segmentation is obtained as the most likely hypothesis according to a grammar. This approach is compared to Conditional Random Fields and results show significant improvements in several cases. Furthermore, grammars provide a detailed segmentation that allowed a semantic evaluation which also validates this model.  
  Address Madeira; Portugal; June 2013  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-38627-5 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG; 605.203 Approved no  
  Call Number Admin @ si @ ACS2013 Serial 2328  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny edit   pdf
doi  isbn
openurl 
  Title Notation-invariant patch-based wall detector in architectural floor plans Type Book Chapter
  Year 2013 Publication Graphics Recognition. New Trends and Challenges Abbreviated Journal  
  Volume 7423 Issue Pages 79--88  
  Keywords  
  Abstract Architectural floor plans exhibit a large variability in notation. Therefore, segmenting and identifying the elements of any kind of plan becomes a challenging task for approaches based on grouping structural primitives obtained by vectorization. Recently, a patch-based segmentation method working at pixel level and relying on the construction of a visual vocabulary has been proposed in [1], showing its adaptability to different notations by automatically learning the visual appearance of the elements in each different notation. This paper presents an evolution of that previous work, after analyzing and testing several alternatives for each of the different steps of the method: Firstly, an automatic plan-size normalization process is done. Secondly we evaluate different features to obtain the description of every patch. Thirdly, we train an SVM classifier to obtain the category of every patch instead of constructing a visual vocabulary. These variations of the method have been tested for wall detection on two datasets of architectural floor plans with different notations. After studying in deep each of the steps in the process pipeline, we are able to find the best system configuration, which highly outperforms the results on wall segmentation obtained by the original paper.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up) LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-36823-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 600.056; 605.203 Approved no  
  Call Number Admin @ si @ HMS2013 Serial 2322  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: