|
Records |
Links |
|
Author |
David Fernandez; Josep Llados; Alicia Fornes |
|
|
Title |
Handwritten Word Spotting in Old Manuscript Images Using a Pseudo-Structural Descriptor Organized in a Hash Structure |
Type |
Conference Article |
|
Year |
2011 |
Publication |
5th Iberian Conference on Pattern Recognition and Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
6669 |
Issue |
|
Pages |
628-635 |
|
|
Keywords |
|
|
|
Abstract |
There are lots of historical handwritten documents with information that can be used for several studies and projects. The Document Image Analysis and Recognition community is interested in preserving these documents and extracting all the valuable information from them. Handwritten word-spotting is the pattern classification task which consists in detecting handwriting word images. In this work, we have used a query-by-example formalism: we have matched an input image with one or multiple images from handwritten documents to determine the distance that might indicate a correspondence. We have developed an approach based in characteristic Loci Features stored in a hash structure. Document images of the marriage licences of the Cathedral of Barcelona are used as the benchmarking database. |
|
|
Address |
Las Palmas de Gran Canaria. Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
Jordi Vitria; Joao Miguel Raposo; Mario Hernandez |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-642-21256-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IbPRIA |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ FLF2011 |
Serial |
1742 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke |
|
|
Title |
Dimensionality Reduction for Graph of Words Embedding |
Type |
Conference Article |
|
Year |
2011 |
Publication |
8th IAPR-TC-15 International Workshop. Graph-Based Representations in Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
6658 |
Issue |
|
Pages |
22-31 |
|
|
Keywords |
|
|
|
Abstract |
The Graph of Words Embedding consists in mapping every graph of a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. While it shows good properties in classification problems, it suffers from high dimensionality and sparsity. These two issues are addressed in this article. Two well-known techniques for dimensionality reduction, kernel principal component analysis (kPCA) and independent component analysis (ICA), are applied to the embedded graphs. We discuss their performance compared to the classification of the original vectors on three different public databases of graphs. |
|
|
Address |
Münster, Germany |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
Xiaoyi Jiang; Miquel Ferrer; Andrea Torsello |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-642-20843-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GbRPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2011a |
Serial |
1743 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke |
|
|
Title |
Vocabulary Selection for Graph of Words Embedding |
Type |
Conference Article |
|
Year |
2011 |
Publication |
5th Iberian Conference on Pattern Recognition and Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
6669 |
Issue |
|
Pages |
216-223 |
|
|
Keywords |
|
|
|
Abstract |
The Graph of Words Embedding consists in mapping every graph in a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. It has been shown to perform well for graphs with discrete label alphabets. In this paper we extend the methodology to graphs with n-dimensional continuous attributes by selecting node representatives. We propose three different discretization procedures for the attribute space and experimentally evaluate the dependence on both the selector and the number of node representatives. In the context of graph classification, the experimental results reveal that on two out of three public databases the proposed extension achieves superior performance over a standard reference system. |
|
|
Address |
Las Palmas de Gran Canaria. Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
Berlin |
Editor |
Vitria, Jordi; Sanches, João Miguel Raposo; Hernández, Mario |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-642-21256-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IbPRIA |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2011b |
Serial |
1744 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Oriol Ramos Terrades; Horst Bunke |
|
|
Title |
Multiple Classifiers for Graph of Words Embedding |
Type |
Conference Article |
|
Year |
2011 |
Publication |
10th International Conference on Multiple Classifier Systems |
Abbreviated Journal |
|
|
|
Volume |
6713 |
Issue |
|
Pages |
36-45 |
|
|
Keywords |
|
|
|
Abstract |
During the last years, there has been an increasing interest in applying the multiple classifier framework to the domain of structural pattern recognition. Constructing base classifiers when the input patterns are graph based representations is not an easy problem. In this work, we make use of the graph embedding methodology in order to construct different feature vector representations for graphs. The graph of words embedding assigns a feature vector to every graph by counting unary and binary relations between node representatives and combining these pieces of information into a single vector. Selecting different node representatives leads to different vectorial representations and therefore to different base classifiers that can be combined. We experimentally show how this methodology significantly improves the classification of graphs with respect to single base classifiers. |
|
|
Address |
Napoles, Italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
Carlo Sansone; Josef Kittler; Fabio Roli |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-642-21556-8 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MCS |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @GVR2011 |
Serial |
1745 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Alicia Fornes; Ernest Valveny |
|
|
Title |
A Non-Rigid Feature Extraction Method for Shape Recognition |
Type |
Conference Article |
|
Year |
2011 |
Publication |
11th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
987-991 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a methodology for shape recognition that focuses on dealing with the difficult problem of large deformations. The proposed methodology consists in a novel feature extraction technique, which uses a non-rigid representation adaptable to the shape. This technique employs a deformable grid based on the computation of geometrical centroids that follows a region partitioning algorithm. Then, a feature vector is extracted by computing pixel density measures around these geometrical centroids. The result is a shape descriptor that adapts its representation to the given shape and encodes the pixel density distribution. The validity of the method when dealing with large deformations has been experimentally shown over datasets composed of handwritten shapes. It has been applied to signature verification and shape recognition tasks demonstrating high accuracy and low computational cost. |
|
|
Address |
Beijing; China; September 2011 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-0-7695-4520-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ AFV2011 |
Serial |
1763 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados |
|
|
Title |
Browsing Heterogeneous Document Collections by a Segmentation-Free Word Spotting Method |
Type |
Conference Article |
|
Year |
2011 |
Publication |
11th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
63-67 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we present a segmentation-free word spotting method that is able to deal with heterogeneous document image collections. We propose a patch-based framework where patches are represented by a bag-of-visual-words model powered by SIFT descriptors. A later refinement of the feature vectors is performed by applying the latent semantic indexing technique. The proposed method performs well on both handwritten and typewritten historical document images. We have also tested our method on documents written in non-Latin scripts. |
|
|
Address |
Beijing, China |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RAT2011 |
Serial |
1788 |
|
Permanent link to this record |
|
|
|
|
Author |
Volkmar Frinken; Andreas Fischer; Horst Bunke; Alicia Fornes |
|
|
Title |
Co-training for Handwritten Word Recognition |
Type |
Conference Article |
|
Year |
2011 |
Publication |
11th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
314-318 |
|
|
Keywords |
|
|
|
Abstract |
To cope with the tremendous variations of writing styles encountered between different individuals, unconstrained automatic handwriting recognition systems need to be trained on large sets of labeled data. Traditionally, the training data has to be labeled manually, which is a laborious and costly process. Semi-supervised learning techniques offer methods to utilize unlabeled data, which can be obtained cheaply in large amounts in order, to reduce the need for labeled data. In this paper, we propose the use of Co-Training for improving the recognition accuracy of two weakly trained handwriting recognition systems. The first one is based on Recurrent Neural Networks while the second one is based on Hidden Markov Models. On the IAM off-line handwriting database we demonstrate a significant increase of the recognition accuracy can be achieved with Co-Training for single word recognition. |
|
|
Address |
Beijing, China |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ FFB2011 |
Serial |
1789 |
|
Permanent link to this record |
|
|
|
|
Author |
Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados; Thierry Brouard |
|
|
Title |
Subgraph Spotting Through Explicit Graph Embedding: An Application to Content Spotting in Graphic Document Images |
Type |
Conference Article |
|
Year |
2011 |
Publication |
11th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
870-874 |
|
|
Keywords |
|
|
|
Abstract |
We present a method for spotting a subgraph in a graph repository. Subgraph spotting is a very interesting research problem for various application domains where the use of a relational data structure is mandatory. Our proposed method accomplishes subgraph spotting through graph embedding. We achieve automatic indexation of a graph repository during off-line learning phase, where we (i) break the graphs into 2-node sub graphs (a.k.a. cliques of order 2), which are primitive building-blocks of a graph, (ii) embed the 2-node sub graphs into feature vectors by employing our recently proposed explicit graph embedding technique, (iii) cluster the feature vectors in classes by employing a classic agglomerative clustering technique, (iv) build an index for the graph repository and (v) learn a Bayesian network classifier. The subgraph spotting is achieved during the on-line querying phase, where we (i) break the query graph into 2-node sub graphs, (ii) embed them into feature vectors, (iii) employ the Bayesian network classifier for classifying the query 2-node sub graphs and (iv) retrieve the respective graphs by looking-up in the index of the graph repository. The graphs containing all query 2-node sub graphs form the set of result graphs for the query. Finally, we employ the adjacency matrix of each result graph along with a score function, for spotting the query graph in it. The proposed subgraph spotting method is equally applicable to a wide range of domains, offering ease of query by example (QBE) and granularity of focused retrieval. Experimental results are presented for graphs generated from two repositories of electronic and architectural document images. |
|
|
Address |
Beijing, China |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
978-1-4577-1350-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ LRL2011 |
Serial |
1790 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Josep Llados; Umapada Pal |
|
|
Title |
Symbol Spotting in Line Drawings Through Graph Paths Hashing |
Type |
Conference Article |
|
Year |
2011 |
Publication |
11th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
982-986 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose a symbol spotting technique through hashing the shape descriptors of graph paths (Hamiltonian paths). Complex graphical structures in line drawings can be efficiently represented by graphs, which ease the accurate localization of the model symbol. Graph paths are the factorized substructures of graphs which enable robust recognition even in the presence of noise and distortion. In our framework, the entire database of the graphical documents is indexed in hash tables by the locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. The spotting method is formulated by a spatial voting scheme to the list of locations of the paths that are decided during the hash table lookup process. We perform detailed experiments with various dataset of line drawings and the results demonstrate the effectiveness and efficiency of the technique. |
|
|
Address |
Beijing, China |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
978-1-4577-1350-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ DLP2011b |
Serial |
1791 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny |
|
|
Title |
Wall Patch-Based Segmentation in Architectural Floorplans |
Type |
Conference Article |
|
Year |
2011 |
Publication |
11th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1270-1274 |
|
|
Keywords |
|
|
|
Abstract |
Segmentation of architectural floor plans is a challenging task, mainly because of the large variability in the notation between different plans. In general, traditional techniques, usually based on analyzing and grouping structural primitives obtained by vectorization, are only able to handle a reduced range of similar notations. In this paper we propose an alternative patch-based segmentation approach working at pixel level, without need of vectorization. The image is divided into a set of patches and a set of features is extracted for every patch. Then, each patch is assigned to a visual word of a previously learned vocabulary and given a probability of belonging to each class of objects. Finally, a post-process assigns the final label for every pixel. This approach has been applied to the detection of walls on two datasets of architectural floor plans with different notations, achieving high accuracy rates. |
|
|
Address |
Beiging, China |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
978-0-7695-4520-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ HMS2011a |
Serial |
1792 |
|
Permanent link to this record |