toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Albert Gordo; Alicia Fornes; Ernest Valveny edit   pdf
doi  openurl
  Title Writer identification in handwritten musical scores with bags of notes Type Journal Article
  Year (up) 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 5 Pages 1337-1345  
  Keywords  
  Abstract Writer Identification is an important task for the automatic processing of documents. However, the identification of the writer in graphical documents is still challenging. In this work, we adapt the Bag of Visual Words framework to the task of writer identification in handwritten musical scores. A vanilla implementation of this method already performs comparably to the state-of-the-art. Furthermore, we analyze the effect of two improvements of the representation: a Bhattacharyya embedding, which improves the results at virtually no extra cost, and a Fisher Vector representation that very significantly improves the results at the cost of a more complex and costly representation. Experimental evaluation shows results more than 20 points above the state-of-the-art in a new, challenging dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ GFV2013 Serial 2307  
Permanent link to this record
 

 
Author Veronica Romero; Alicia Fornes; Nicolas Serrano; Joan Andreu Sanchez; A.H. Toselli; Volkmar Frinken; E. Vidal; Josep Llados edit   pdf
doi  openurl
  Title The ESPOSALLES database: An ancient marriage license corpus for off-line handwriting recognition Type Journal Article
  Year (up) 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 6 Pages 1658-1669  
  Keywords  
  Abstract Historical records of daily activities provide intriguing insights into the life of our ancestors, useful for demography studies and genealogical research. Automatic processing of historical documents, however, has mostly been focused on single works of literature and less on social records, which tend to have a distinct layout, structure, and vocabulary. Such information is usually collected by expert demographers that devote a lot of time to manually transcribe them. This paper presents a new database, compiled from a marriage license books collection, to support research in automatic handwriting recognition for historical documents containing social records. Marriage license books are documents that were used for centuries by ecclesiastical institutions to register marriage licenses. Books from this collection are handwritten and span nearly half a millennium until the beginning of the 20th century. In addition, a study is presented about the capability of state-of-the-art handwritten text recognition systems, when applied to the presented database. Baseline results are reported for reference in future studies.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Science Inc. New York, NY, USA Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 602.006; 605.203 Approved no  
  Call Number Admin @ si @ RFS2013 Serial 2298  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit   pdf
doi  openurl
  Title Embedding of Graphs with Discrete Attributes Via Label Frequencies Type Journal Article
  Year (up) 2013 Publication International Journal of Pattern Recognition and Artificial Intelligence Abbreviated Journal IJPRAI  
  Volume 27 Issue 3 Pages 1360002-1360029  
  Keywords Discrete attributed graphs; graph embedding; graph classification  
  Abstract Graph-based representations of patterns are very flexible and powerful, but they are not easily processed due to the lack of learning algorithms in the domain of graphs. Embedding a graph into a vector space solves this problem since graphs are turned into feature vectors and thus all the statistical learning machinery becomes available for graph input patterns. In this work we present a new way of embedding discrete attributed graphs into vector spaces using node and edge label frequencies. The methodology is experimentally tested on graph classification problems, using patterns of different nature, and it is shown to be competitive to state-of-the-art classification algorithms for graphs, while being computationally much more efficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2013 Serial 2305  
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados; Thierry Brouard edit  url
doi  openurl
  Title Fuzzy Multilevel Graph Embedding Type Journal Article
  Year (up) 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 2 Pages 551-565  
  Keywords Pattern recognition; Graphics recognition; Graph clustering; Graph classification; Explicit graph embedding; Fuzzy logic  
  Abstract Structural pattern recognition approaches offer the most expressive, convenient, powerful but computational expensive representations of underlying relational information. To benefit from mature, less expensive and efficient state-of-the-art machine learning models of statistical pattern recognition they must be mapped to a low-dimensional vector space. Our method of explicit graph embedding bridges the gap between structural and statistical pattern recognition. We extract the topological, structural and attribute information from a graph and encode numeric details by fuzzy histograms and symbolic details by crisp histograms. The histograms are concatenated to achieve a simple and straightforward embedding of graph into a low-dimensional numeric feature vector. Experimentation on standard public graph datasets shows that our method outperforms the state-of-the-art methods of graph embedding for richly attributed graphs.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.042; 600.045; 605.203 Approved no  
  Call Number Admin @ si @ LRL2013a Serial 2270  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Umapada Pal edit   pdf
url  doi
openurl 
  Title A symbol spotting approach in graphical documents by hashing serialized graphs Type Journal Article
  Year (up) 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 3 Pages 752-768  
  Keywords Symbol spotting; Graphics recognition; Graph matching; Graph serialization; Graph factorization; Graph paths; Hashing  
  Abstract In this paper we propose a symbol spotting technique in graphical documents. Graphs are used to represent the documents and a (sub)graph matching technique is used to detect the symbols in them. We propose a graph serialization to reduce the usual computational complexity of graph matching. Serialization of graphs is performed by computing acyclic graph paths between each pair of connected nodes. Graph paths are one-dimensional structures of graphs which are less expensive in terms of computation. At the same time they enable robust localization even in the presence of noise and distortion. Indexing in large graph databases involves a computational burden as well. We propose a graph factorization approach to tackle this problem. Factorization is intended to create a unified indexed structure over the database of graphical documents. Once graph paths are extracted, the entire database of graphical documents is indexed in hash tables by locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. We have performed detailed experiments with various datasets of line drawings and compared our method with the state-of-the-art works. The results demonstrate the effectiveness and efficiency of our technique.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.042; 600.045; 605.203; 601.152 Approved no  
  Call Number Admin @ si @ DLP2012 Serial 2127  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: