|
Records |
Links |
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke |


|
|
Title |
Embedding of Graphs with Discrete Attributes Via Label Frequencies |
Type |
Journal Article |
|
Year |
2013 |
Publication |
International Journal of Pattern Recognition and Artificial Intelligence |
Abbreviated Journal |
IJPRAI |
|
|
Volume  |
27 |
Issue |
3 |
Pages |
1360002-1360029 |
|
|
Keywords |
Discrete attributed graphs; graph embedding; graph classification |
|
|
Abstract |
Graph-based representations of patterns are very flexible and powerful, but they are not easily processed due to the lack of learning algorithms in the domain of graphs. Embedding a graph into a vector space solves this problem since graphs are turned into feature vectors and thus all the statistical learning machinery becomes available for graph input patterns. In this work we present a new way of embedding discrete attributed graphs into vector spaces using node and edge label frequencies. The methodology is experimentally tested on graph classification problems, using patterns of different nature, and it is shown to be competitive to state-of-the-art classification algorithms for graphs, while being computationally much more efficient. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2013 |
Serial |
2305 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Marçal Rusiñol; Alicia Fornes; David Fernandez; Anjan Dutta |


|
|
Title |
On the Influence of Word Representations for Handwritten Word Spotting in Historical Documents |
Type |
Journal Article |
|
Year |
2012 |
Publication |
International Journal of Pattern Recognition and Artificial Intelligence |
Abbreviated Journal |
IJPRAI |
|
|
Volume  |
26 |
Issue |
5 |
Pages |
1263002-126027 |
|
|
Keywords |
Handwriting recognition; word spotting; historical documents; feature representation; shape descriptors Read More: http://www.worldscientific.com/doi/abs/10.1142/S0218001412630025 |
|
|
Abstract |
0,624 JCR
Word spotting is the process of retrieving all instances of a queried keyword from a digital library of document images. In this paper we evaluate the performance of different word descriptors to assess the advantages and disadvantages of statistical and structural models in a framework of query-by-example word spotting in historical documents. We compare four word representation models, namely sequence alignment using DTW as a baseline reference, a bag of visual words approach as statistical model, a pseudo-structural model based on a Loci features representation, and a structural approach where words are represented by graphs. The four approaches have been tested with two collections of historical data: the George Washington database and the marriage records from the Barcelona Cathedral. We experimentally demonstrate that statistical representations generally give a better performance, however it cannot be neglected that large descriptors are difficult to be implemented in a retrieval scenario where word spotting requires the indexation of data with million word images. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ LRF2012 |
Serial |
2128 |
|
Permanent link to this record |
|
|
|
|
Author |
Antonio Lopez; Ernest Valveny; Juan J. Villanueva |

|
|
Title |
Real-time quality control of surgical material packaging by artificial vision |
Type |
Journal Article |
|
Year |
2005 |
Publication |
Assembly Automation |
Abbreviated Journal |
|
|
|
Volume  |
25 |
Issue |
3 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
IF: 0.061) |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;DAG |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ LVV2005 |
Serial |
552 |
|
Permanent link to this record |
|
|
|
|
Author |
Ernest Valveny; Enric Marti |


|
|
Title |
A model for image generation and symbol recognition through the deformation of lineal shapes |
Type |
Journal Article |
|
Year |
2003 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume  |
24 |
Issue |
15 |
Pages |
2857-2867 |
|
|
Keywords |
|
|
|
Abstract |
We describe a general framework for the recognition of distorted images of lineal shapes, which relies on three items: a model to represent lineal shapes and their deformations, a model for the generation of distorted binary images and the combination of both models in a common probabilistic framework, where the generation of deformations is related to an internal energy, and the generation of binary images to an external energy. Then, recognition consists in the minimization of a global energy function, performed by using the EM algorithm. This general framework has been applied to the recognition of hand-drawn lineal symbols in graphic documents. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier Science Inc. |
Place of Publication |
New York, NY, USA |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0167-8655 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VAM2003 |
Serial |
1653 |
|
Permanent link to this record |
|
|
|
|
Author |
Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal |


|
|
Title |
Beyond Document Object Detection: Instance-Level Segmentation of Complex Layouts |
Type |
Journal Article |
|
Year |
2021 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume  |
24 |
Issue |
|
Pages |
269–281 |
|
|
Keywords |
|
|
|
Abstract |
Information extraction is a fundamental task of many business intelligence services that entail massive document processing. Understanding a document page structure in terms of its layout provides contextual support which is helpful in the semantic interpretation of the document terms. In this paper, inspired by the progress of deep learning methodologies applied to the task of object recognition, we transfer these models to the specific case of document object detection, reformulating the traditional problem of document layout analysis. Moreover, we importantly contribute to prior arts by defining the task of instance segmentation on the document image domain. An instance segmentation paradigm is especially important in complex layouts whose contents should interact for the proper rendering of the page, i.e., the proper text wrapping around an image. Finally, we provide an extensive evaluation, both qualitative and quantitative, that demonstrates the superior performance of the proposed methodology over the current state of the art. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRL2021b |
Serial |
3574 |
|
Permanent link to this record |