|
Records |
Links |
|
Author |
Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados |
|
|
Title |
Efficient segmentation-free keyword spotting in historical document collections |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
48 |
Issue |
2 |
Pages |
545–555 |
|
|
Keywords |
Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization |
|
|
Abstract |
In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.076; 600.077; 600.061; 601.223; 602.006; 600.055 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RAT2015a |
Serial |
2544 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Josep Llados |
|
|
Title |
Boosting the Handwritten Word Spotting Experience by Including the User in the Loop |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
47 |
Issue |
3 |
Pages |
1063–1072 |
|
|
Keywords |
Handwritten word spotting; Query by example; Relevance feedback; Query fusion; Multidimensional scaling |
|
|
Abstract |
In this paper, we study the effect of taking the user into account in a query-by-example handwritten word spotting framework. Several off-the-shelf query fusion and relevance feedback strategies have been tested in the handwritten word spotting context. The increase in terms of precision when the user is included in the loop is assessed using two datasets of historical handwritten documents and two baseline word spotting approaches both based on the bag-of-visual-words model. We finally present two alternative ways of presenting the results to the user that might be more attractive and suitable to the user's needs than the classic ranked list. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.045; 600.061; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RuL2013 |
Serial |
2343 |
|
Permanent link to this record |
|
|
|
|
Author |
Volkmar Frinken; Andreas Fischer; Markus Baumgartner; Horst Bunke |
|
|
Title |
Keyword spotting for self-training of BLSTM NN based handwriting recognition systems |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
47 |
Issue |
3 |
Pages |
1073-1082 |
|
|
Keywords |
Document retrieval; Keyword spotting; Handwriting recognition; Neural networks; Semi-supervised learning |
|
|
Abstract |
The automatic transcription of unconstrained continuous handwritten text requires well trained recognition systems. The semi-supervised paradigm introduces the concept of not only using labeled data but also unlabeled data in the learning process. Unlabeled data can be gathered at little or not cost. Hence it has the potential to reduce the need for labeling training data, a tedious and costly process. Given a weak initial recognizer trained on labeled data, self-training can be used to recognize unlabeled data and add words that were recognized with high confidence to the training set for re-training. This process is not trivial and requires great care as far as selecting the elements that are to be added to the training set is concerned. In this paper, we propose to use a bidirectional long short-term memory neural network handwritten recognition system for keyword spotting in order to select new elements. A set of experiments shows the high potential of self-training for bootstrapping handwriting recognition systems, both for modern and historical handwritings, and demonstrate the benefits of using keyword spotting over previously published self-training schemes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.077; 602.101 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FFB2014 |
Serial |
2297 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny |
|
|
Title |
Segmentation-free Word Spotting with Exemplar SVMs |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
47 |
Issue |
12 |
Pages |
3967–3978 |
|
|
Keywords |
Word spotting; Segmentation-free; Unsupervised learning; Reranking; Query expansion; Compression |
|
|
Abstract |
In this paper we propose an unsupervised segmentation-free method for word spotting in document images. Documents are represented with a grid of HOG descriptors, and a sliding-window approach is used to locate the document regions that are most similar to the query. We use the Exemplar SVM framework to produce a better representation of the query in an unsupervised way. Then, we use a more discriminative representation based on Fisher Vector to rerank the best regions retrieved, and the most promising ones are used to expand the Exemplar SVM training set and improve the query representation. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.045; 600.056; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ AGF2014b |
Serial |
2485 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Gordo; Florent Perronnin; Ernest Valveny |
|
|
Title |
Large-scale document image retrieval and classification with runlength histograms and binary embeddings |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue |
7 |
Pages |
1898-1905 |
|
|
Keywords |
visual document descriptor; compression; large-scale; retrieval; classification |
|
|
Abstract |
We present a new document image descriptor based on multi-scale runlength
histograms. This descriptor does not rely on layout analysis and can be
computed efficiently. We show how this descriptor can achieve state-of-theart
results on two very different public datasets in classification and retrieval
tasks. Moreover, we show how we can compress and binarize these descriptors
to make them suitable for large-scale applications. We can achieve state-ofthe-
art results in classification using binary descriptors of as few as 16 to 64
bits. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.042; 600.045; 605.203 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GPV2013 |
Serial |
2306 |
|
Permanent link to this record |