|
Records |
Links |
|
Author |
Marçal Rusiñol; Josep Llados; Gemma Sanchez |

|
|
Title  |
Symbol Spotting in Vectorized Technical Drawings Through a Lookup Table of Region Strings |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Pattern Analysis and Applications |
Abbreviated Journal |
PAA |
|
|
Volume |
13 |
Issue |
3 |
Pages |
321-331 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we address the problem of symbol spotting in technical document images applied to scanned and vectorized line drawings. Like any information spotting architecture, our approach has two components. First, symbols are decomposed in primitives which are compactly represented and second a primitive indexing structure aims to efficiently retrieve similar primitives. Primitives are encoded in terms of attributed strings representing closed regions. Similar strings are clustered in a lookup table so that the set median strings act as indexing keys. A voting scheme formulates hypothesis in certain locations of the line drawing image where there is a high presence of regions similar to the queried ones, and therefore, a high probability to find the queried graphical symbol. The proposed approach is illustrated in a framework consisting in spotting furniture symbols in architectural drawings. It has been proved to work even in the presence of noise and distortion introduced by the scanning and raster-to-vector processes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Verlag |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-7541 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RLS2010 |
Serial |
1165 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Enric Marti; Juan J.Villanueva |

|
|
Title  |
Symbol recognition by error-tolerant subgraph matching between region adjacency graphs |
Type |
Journal Article |
|
Year |
2001 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
|
|
|
Volume |
23 |
Issue |
10 |
Pages |
1137-1143 |
|
|
Keywords |
|
|
|
Abstract |
The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG;IAM;ISE; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ LMV2001 |
Serial |
1581 |
|
Permanent link to this record |
|
|
|
|
Author |
Thanh Nam Le; Muhammad Muzzamil Luqman; Anjan Dutta; Pierre Heroux; Christophe Rigaud; Clement Guerin; Pasquale Foggia; Jean Christophe Burie; Jean Marc Ogier; Josep Llados; Sebastien Adam |

|
|
Title  |
Subgraph spotting in graph representations of comic book images |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
112 |
Issue |
|
Pages |
118-124 |
|
|
Keywords |
Attributed graph; Region adjacency graph; Graph matching; Graph isomorphism; Subgraph isomorphism; Subgraph spotting; Graph indexing; Graph retrieval; Query by example; Dataset and comic book images |
|
|
Abstract |
Graph-based representations are the most powerful data structures for extracting, representing and preserving the structural information of underlying data. Subgraph spotting is an interesting research problem, especially for studying and investigating the structural information based content-based image retrieval (CBIR) and query by example (QBE) in image databases. In this paper we address the problem of lack of freely available ground-truthed datasets for subgraph spotting and present a new dataset for subgraph spotting in graph representations of comic book images (SSGCI) with its ground-truth and evaluation protocol. Experimental results of two state-of-the-art methods of subgraph spotting are presented on the new SSGCI dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LLD2018 |
Serial |
3150 |
|
Permanent link to this record |
|
|
|
|
Author |
Francisco Alvaro; Francisco Cruz; Joan Andreu Sanchez; Oriol Ramos Terrades; Jose Miguel Benedi |


|
|
Title  |
Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Neurocomputing |
Abbreviated Journal |
NEUCOM |
|
|
Volume |
150 |
Issue |
A |
Pages |
147-154 |
|
|
Keywords |
document image analysis; stochastic context-free grammars; text classication features |
|
|
Abstract |
In this paper we dene a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classication features are used to perform an initial classication of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 601.158; 600.077; 600.061 |
Approved |
no |
|
|
Call Number |
Admin @ si @ ACS2015 |
Serial |
2531 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Hichem Sahbi |


|
|
Title  |
Stochastic Graphlet Embedding |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Transactions on Neural Networks and Learning Systems |
Abbreviated Journal |
TNNLS |
|
|
Volume |
|
Issue |
|
Pages |
1-14 |
|
|
Keywords |
Stochastic graphlets; Graph embedding; Graph classification; Graph hashing; Betweenness centrality |
|
|
Abstract |
Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of – explicit/implicit –graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 602.167; 602.168; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DuS2018 |
Serial |
3225 |
|
Permanent link to this record |