|
Records |
Links |
|
Author |
Pau Riba; Lutz Goldmann; Oriol Ramos Terrades; Diede Rusticus; Alicia Fornes; Josep Llados |

|
|
Title |
Table detection in business document images by message passing networks |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
127 |
Issue |
|
Pages |
108641 |
|
|
Keywords |
|
|
|
Abstract |
Tabular structures in business documents offer a complementary dimension to the raw textual data. For instance, there is information about the relationships among pieces of information. Nowadays, digital mailroom applications have become a key service for workflow automation. Therefore, the detection and interpretation of tables is crucial. With the recent advances in information extraction, table detection and recognition has gained interest in document image analysis, in particular, with the absence of rule lines and unknown information about rows and columns. However, business documents usually contain sensitive contents limiting the amount of public benchmarking datasets. In this paper, we propose a graph-based approach for detecting tables in document images which do not require the raw content of the document. Hence, the sensitive content can be previously removed and, instead of using the raw image or textual content, we propose a purely structural approach to keep sensitive data anonymous. Our framework uses graph neural networks (GNNs) to describe the local repetitive structures that constitute a table. In particular, our main application domain are business documents. We have carefully validated our approach in two invoice datasets and a modern document benchmark. Our experiments demonstrate that tables can be detected by purely structural approaches. |
|
|
Address |
July 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
DAG; 600.162; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RGR2022 |
Serial |
3729 |
|
Permanent link to this record |
|
|
|
|
Author |
Francisco Alvaro; Francisco Cruz; Joan Andreu Sanchez; Oriol Ramos Terrades; Jose Miguel Benedi |


|
|
Title |
Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Neurocomputing |
Abbreviated Journal |
NEUCOM |
|
|
Volume |
150 |
Issue |
A |
Pages |
147-154 |
|
|
Keywords |
document image analysis; stochastic context-free grammars; text classication features |
|
|
Abstract |
In this paper we dene a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classication features are used to perform an initial classication of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
DAG; 601.158; 600.077; 600.061 |
Approved |
no |
|
|
Call Number |
Admin @ si @ ACS2015 |
Serial |
2531 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Josep Llados; Horst Bunke; Umapada Pal |


|
|
Title |
Product graph-based higher order contextual similarities for inexact subgraph matching |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
76 |
Issue |
|
Pages |
596-611 |
|
|
Keywords |
|
|
|
Abstract |
Many algorithms formulate graph matching as an optimization of an objective function of pairwise quantification of nodes and edges of two graphs to be matched. Pairwise measurements usually consider local attributes but disregard contextual information involved in graph structures. We address this issue by proposing contextual similarities between pairs of nodes. This is done by considering the tensor product graph (TPG) of two graphs to be matched, where each node is an ordered pair of nodes of the operand graphs. Contextual similarities between a pair of nodes are computed by accumulating weighted walks (normalized pairwise similarities) terminating at the corresponding paired node in TPG. Once the contextual similarities are obtained, we formulate subgraph matching as a node and edge selection problem in TPG. We use contextual similarities to construct an objective function and optimize it with a linear programming approach. Since random walk formulation through TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities and better discrimination among the nodes and edges. Experimental results shown on synthetic as well as real benchmarks illustrate that higher order contextual similarities increase discriminating power and allow one to find approximate solutions to the subgraph matching problem. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
DAG; 602.167; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DLB2018 |
Serial |
3083 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Hichem Sahbi |


|
|
Title |
Stochastic Graphlet Embedding |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Transactions on Neural Networks and Learning Systems |
Abbreviated Journal |
TNNLS |
|
|
Volume |
|
Issue |
|
Pages |
1-14 |
|
|
Keywords |
Stochastic graphlets; Graph embedding; Graph classification; Graph hashing; Betweenness centrality |
|
|
Abstract |
Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of – explicit/implicit –graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
DAG; 602.167; 602.168; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DuS2018 |
Serial |
3225 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohamed Ali Souibgui; Y.Kessentini |


|
|
Title |
DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement |
Type |
Journal Article |
|
Year |
2022 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
44 |
Issue |
3 |
Pages |
1180-1191 |
|
|
Keywords |
|
|
|
Abstract |
Documents often exhibit various forms of degradation, which make it hard to be read and substantially deteriorate the performance of an OCR system. In this paper, we propose an effective end-to-end framework named Document Enhancement Generative Adversarial Networks (DE-GAN) that uses the conditional GANs (cGANs) to restore severely degraded document images. To the best of our knowledge, this practice has not been studied within the context of generative adversarial deep networks. We demonstrate that, in different tasks (document clean up, binarization, deblurring and watermark removal), DE-GAN can produce an enhanced version of the degraded document with a high quality. In addition, our approach provides consistent improvements compared to state-of-the-art methods over the widely used DIBCO 2013, DIBCO 2017 and H-DIBCO 2018 datasets, proving its ability to restore a degraded document image to its ideal condition. The obtained results on a wide variety of degradation reveal the flexibility of the proposed model to be exploited in other document enhancement problems. |
|
|
Address |
1 March 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes  |
DAG; 602.230; 600.121; 600.140 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SoK2022 |
Serial |
3454 |
|
Permanent link to this record |