|
Records |
Links |
|
Author |
Lei Kang; Pau Riba; Marçal Rusiñol; Alicia Fornes; Mauricio Villegas |


|
|
Title |
Pay Attention to What You Read: Non-recurrent Handwritten Text-Line Recognition |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
129 |
Issue |
|
Pages  |
108766 |
|
|
Keywords |
|
|
|
Abstract |
The advent of recurrent neural networks for handwriting recognition marked an important milestone reaching impressive recognition accuracies despite the great variability that we observe across different writing styles. Sequential architectures are a perfect fit to model text lines, not only because of the inherent temporal aspect of text, but also to learn probability distributions over sequences of characters and words. However, using such recurrent paradigms comes at a cost at training stage, since their sequential pipelines prevent parallelization. In this work, we introduce a non-recurrent approach to recognize handwritten text by the use of transformer models. We propose a novel method that bypasses any recurrence. By using multi-head self-attention layers both at the visual and textual stages, we are able to tackle character recognition as well as to learn language-related dependencies of the character sequences to be decoded. Our model is unconstrained to any predefined vocabulary, being able to recognize out-of-vocabulary words, i.e. words that do not appear in the training vocabulary. We significantly advance over prior art and demonstrate that satisfactory recognition accuracies are yielded even in few-shot learning scenarios. |
|
|
Address |
Sept. 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.162 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRR2022 |
Serial |
3556 |
|
Permanent link to this record |
|
|
|
|
Author |
Souhail Bakkali; Zuheng Ming; Mickael Coustaty; Marçal Rusiñol; Oriol Ramos Terrades |


|
|
Title |
VLCDoC: Vision-Language Contrastive Pre-Training Model for Cross-Modal Document Classification |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
139 |
Issue |
|
Pages  |
109419 |
|
|
Keywords |
|
|
|
Abstract |
Multimodal learning from document data has achieved great success lately as it allows to pre-train semantically meaningful features as a prior into a learnable downstream approach. In this paper, we approach the document classification problem by learning cross-modal representations through language and vision cues, considering intra- and inter-modality relationships. Instead of merging features from different modalities into a common representation space, the proposed method exploits high-level interactions and learns relevant semantic information from effective attention flows within and across modalities. The proposed learning objective is devised between intra- and inter-modality alignment tasks, where the similarity distribution per task is computed by contracting positive sample pairs while simultaneously contrasting negative ones in the common feature representation space}. Extensive experiments on public document classification datasets demonstrate the effectiveness and the generalization capacity of our model on both low-scale and large-scale datasets. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
ISSN 0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BMC2023 |
Serial |
3826 |
|
Permanent link to this record |
|
|
|
|
Author |
Ruben Tito; Dimosthenis Karatzas; Ernest Valveny |


|
|
Title |
Hierarchical multimodal transformers for Multi-Page DocVQA |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
144 |
Issue |
|
Pages  |
109834 |
|
|
Keywords |
|
|
|
Abstract |
Document Visual Question Answering (DocVQA) refers to the task of answering questions from document images. Existing work on DocVQA only considers single-page documents. However, in real scenarios documents are mostly composed of multiple pages that should be processed altogether. In this work we extend DocVQA to the multi-page scenario. For that, we first create a new dataset, MP-DocVQA, where questions are posed over multi-page documents instead of single pages. Second, we propose a new hierarchical method, Hi-VT5, based on the T5 architecture, that overcomes the limitations of current methods to process long multi-page documents. The proposed method is based on a hierarchical transformer architecture where the encoder summarizes the most relevant information of every page and then, the decoder takes this summarized information to generate the final answer. Through extensive experimentation, we demonstrate that our method is able, in a single stage, to answer the questions and provide the page that contains the relevant information to find the answer, which can be used as a kind of explainability measure. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
ISSN 0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.155; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TKV2023 |
Serial |
3825 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Marçal Rusiñol; Alicia Fornes; David Fernandez; Anjan Dutta |


|
|
Title |
On the Influence of Word Representations for Handwritten Word Spotting in Historical Documents |
Type |
Journal Article |
|
Year |
2012 |
Publication |
International Journal of Pattern Recognition and Artificial Intelligence |
Abbreviated Journal |
IJPRAI |
|
|
Volume |
26 |
Issue |
5 |
Pages  |
1263002-126027 |
|
|
Keywords |
Handwriting recognition; word spotting; historical documents; feature representation; shape descriptors Read More: http://www.worldscientific.com/doi/abs/10.1142/S0218001412630025 |
|
|
Abstract |
0,624 JCR
Word spotting is the process of retrieving all instances of a queried keyword from a digital library of document images. In this paper we evaluate the performance of different word descriptors to assess the advantages and disadvantages of statistical and structural models in a framework of query-by-example word spotting in historical documents. We compare four word representation models, namely sequence alignment using DTW as a baseline reference, a bag of visual words approach as statistical model, a pseudo-structural model based on a Loci features representation, and a structural approach where words are represented by graphs. The four approaches have been tested with two collections of historical data: the George Washington database and the marriage records from the Barcelona Cathedral. We experimentally demonstrate that statistical representations generally give a better performance, however it cannot be neglected that large descriptors are difficult to be implemented in a retrieval scenario where word spotting requires the indexation of data with million word images. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ LRF2012 |
Serial |
2128 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke |


|
|
Title |
Embedding of Graphs with Discrete Attributes Via Label Frequencies |
Type |
Journal Article |
|
Year |
2013 |
Publication |
International Journal of Pattern Recognition and Artificial Intelligence |
Abbreviated Journal |
IJPRAI |
|
|
Volume |
27 |
Issue |
3 |
Pages  |
1360002-1360029 |
|
|
Keywords |
Discrete attributed graphs; graph embedding; graph classification |
|
|
Abstract |
Graph-based representations of patterns are very flexible and powerful, but they are not easily processed due to the lack of learning algorithms in the domain of graphs. Embedding a graph into a vector space solves this problem since graphs are turned into feature vectors and thus all the statistical learning machinery becomes available for graph input patterns. In this work we present a new way of embedding discrete attributed graphs into vector spaces using node and edge label frequencies. The methodology is experimentally tested on graph classification problems, using patterns of different nature, and it is shown to be competitive to state-of-the-art classification algorithms for graphs, while being computationally much more efficient. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2013 |
Serial |
2305 |
|
Permanent link to this record |