toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Anjan Dutta; Pau Riba; Josep Llados; Alicia Fornes edit   pdf
url  openurl
  Title Hierarchical Stochastic Graphlet Embedding for Graph-based Pattern Recognition Type Journal Article
  Year 2020 Publication Neural Computing and Applications Abbreviated Journal NEUCOMA  
  Volume 32 Issue Pages 11579–11596  
  Keywords  
  Abstract Despite being very successful within the pattern recognition and machine learning community, graph-based methods are often unusable because of the lack of mathematical operations defined in graph domain. Graph embedding, which maps graphs to a vectorial space, has been proposed as a way to tackle these difficulties enabling the use of standard machine learning techniques. However, it is well known that graph embedding functions usually suffer from the loss of structural information. In this paper, we consider the hierarchical structure of a graph as a way to mitigate this loss of information. The hierarchical structure is constructed by topologically clustering the graph nodes and considering each cluster as a node in the upper hierarchical level. Once this hierarchical structure is constructed, we consider several configurations to define the mapping into a vector space given a classical graph embedding, in particular, we propose to make use of the stochastic graphlet embedding (SGE). Broadly speaking, SGE produces a distribution of uniformly sampled low-to-high-order graphlets as a way to embed graphs into the vector space. In what follows, the coarse-to-fine structure of a graph hierarchy and the statistics fetched by the SGE complements each other and includes important structural information with varied contexts. Altogether, these two techniques substantially cope with the usual information loss involved in graph embedding techniques, obtaining a more robust graph representation. This fact has been corroborated through a detailed experimental evaluation on various benchmark graph datasets, where we outperform the state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121; 600.141 Approved no  
  Call Number (up) Admin @ si @ DRL2020 Serial 3348  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Marçal Rusiñol; Aura Hernandez-Sabate edit   pdf
doi  openurl
  Title Feature Extraction by Using Dual-Generalized Discriminative Common Vectors Type Journal Article
  Year 2019 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 61 Issue 3 Pages 331-351  
  Keywords Online feature extraction; Generalized discriminative common vectors; Dual learning; Incremental learning; Decremental learning  
  Abstract In this paper, a dual online subspace-based learning method called dual-generalized discriminative common vectors (Dual-GDCV) is presented. The method extends incremental GDCV by exploiting simultaneously both the concepts of incremental and decremental learning for supervised feature extraction and classification. Our methodology is able to update the feature representation space without recalculating the full projection or accessing the previously processed training data. It allows both adding information and removing unnecessary data from a knowledge base in an efficient way, while retaining the previously acquired knowledge. The proposed method has been theoretically proved and empirically validated in six standard face recognition and classification datasets, under two scenarios: (1) removing and adding samples of existent classes, and (2) removing and adding new classes to a classification problem. Results show a considerable computational gain without compromising the accuracy of the model in comparison with both batch methodologies and other state-of-art adaptive methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.084; 600.118; 600.121; 600.129 Approved no  
  Call Number (up) Admin @ si @ DRR2019 Serial 3172  
Permanent link to this record
 

 
Author Thanh Ha Do; Oriol Ramos Terrades; Salvatore Tabbone edit  url
openurl 
  Title DSD: document sparse-based denoising algorithm Type Journal Article
  Year 2019 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 22 Issue 1 Pages 177–186  
  Keywords Document denoising; Sparse representations; Sparse dictionary learning; Document degradation models  
  Abstract In this paper, we present a sparse-based denoising algorithm for scanned documents. This method can be applied to any kind of scanned documents with satisfactory results. Unlike other approaches, the proposed approach encodes noise documents through sparse representation and visual dictionary learning techniques without any prior noise model. Moreover, we propose a precision parameter estimator. Experiments on several datasets demonstrate the robustness of the proposed approach compared to the state-of-the-art methods on document denoising.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.140; 600.121 Approved no  
  Call Number (up) Admin @ si @ DRT2019 Serial 3254  
Permanent link to this record
 

 
Author Sounak Dey; Palaiahnakote Shivakumara; K.S. Raghunanda; Umapada Pal; Tong Lu; G. Hemantha Kumar; Chee Seng Chan edit  url
openurl 
  Title Script independent approach for multi-oriented text detection in scene image Type Journal Article
  Year 2017 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 242 Issue Pages 96-112  
  Keywords  
  Abstract Developing a text detection method which is invariant to scripts in natural scene images is a challeng- ing task due to different geometrical structures of various scripts. Besides, multi-oriented of text lines in natural scene images make the problem more challenging. This paper proposes to explore ring radius transform (RRT) for text detection in multi-oriented and multi-script environments. The method finds component regions based on convex hull to generate radius matrices using RRT. It is a fact that RRT pro- vides low radius values for the pixels that are near to edges, constant radius values for the pixels that represent stroke width, and high radius values that represent holes created in background and convex hull because of the regular structures of text components. We apply k -means clustering on the radius matrices to group such spatially coherent regions into individual clusters. Then the proposed method studies the radius values of such cluster components that are close to the centroid and far from the cen- troid to detect text components. Furthermore, we have developed a Bangla dataset (named as ISI-UM dataset) and propose a semi-automatic system for generating its ground truth for text detection of arbi- trary orientations, which can be used by the researchers for text detection and recognition in the future. The ground truth will be released to public. Experimental results on our ISI-UM data and other standard datasets, namely, ICDAR 2013 scene, SVT and MSRA data, show that the proposed method outperforms the existing methods in terms of multi-lingual and multi-oriented text detection ability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number (up) Admin @ si @ DSR2017 Serial 3260  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit   pdf
url  openurl
  Title Sparse representation over learned dictionary for symbol recognition Type Journal Article
  Year 2016 Publication Signal Processing Abbreviated Journal SP  
  Volume 125 Issue Pages 36-47  
  Keywords Symbol Recognition; Sparse Representation; Learned Dictionary; Shape Context; Interest Points  
  Abstract In this paper we propose an original sparse vector model for symbol retrieval task. More speci cally, we apply the K-SVD algorithm for learning a visual dictionary based on symbol descriptors locally computed around interest points. Results on benchmark datasets show that the obtained sparse representation is competitive related to state-of-the-art methods. Moreover, our sparse representation is invariant to rotation and scale transforms and also robust to degraded images and distorted symbols. Thereby, the learned visual dictionary is able to represent instances of unseen classes of symbols.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.061; 600.077 Approved no  
  Call Number (up) Admin @ si @ DTR2016 Serial 2946  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: