|
Records |
Links |
|
Author |
Ayan Banerjee; Sanket Biswas; Josep Llados; Umapada Pal |
|
|
Title |
SemiDocSeg: Harnessing Semi-Supervised Learning for Document Layout Analysis |
Type |
Journal Article |
|
Year |
2024 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Document layout analysis; Semi-supervised learning; Co-Occurrence matrix; Instance segmentation; Swin transformer |
|
|
Abstract |
Document Layout Analysis (DLA) is the process of automatically identifying and categorizing the structural components (e.g. Text, Figure, Table, etc.) within a document to extract meaningful content and establish the page's layout structure. It is a crucial stage in document parsing, contributing to their comprehension. However, traditional DLA approaches often demand a significant volume of labeled training data, and the labor-intensive task of generating high-quality annotated training data poses a substantial challenge. In order to address this challenge, we proposed a semi-supervised setting that aims to perform learning on limited annotated categories by eliminating exhaustive and expensive mask annotations. The proposed setting is expected to be generalizable to novel categories as it learns the underlying positional information through a support set and class information through Co-Occurrence that can be generalized from annotated categories to novel categories. Here, we first extract features from the input image and support set with a shared multi-scale feature acquisition backbone. Then, the extracted feature representation is fed to the transformer encoder as a query. Later on, we utilize a semantic embedding network before the decoder to capture the underlying semantic relationships and similarities between different instances, enabling the model to make accurate predictions or classifications with only a limited amount of labeled data. Extensive experimentation on competitive benchmarks like PRIMA, DocLayNet, and Historical Japanese (HJ) demonstrate that this generalized setup obtains significant performance compared to the conventional supervised approach. |
|
|
Address |
June 2024 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ BBL2024a |
Serial |
4001 |
|
Permanent link to this record |
|
|
|
|
Author |
Ruben Tito; Dimosthenis Karatzas; Ernest Valveny |
|
|
Title |
Hierarchical multimodal transformers for Multi-Page DocVQA |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
144 |
Issue |
|
Pages |
109834 |
|
|
Keywords |
|
|
|
Abstract |
Document Visual Question Answering (DocVQA) refers to the task of answering questions from document images. Existing work on DocVQA only considers single-page documents. However, in real scenarios documents are mostly composed of multiple pages that should be processed altogether. In this work we extend DocVQA to the multi-page scenario. For that, we first create a new dataset, MP-DocVQA, where questions are posed over multi-page documents instead of single pages. Second, we propose a new hierarchical method, Hi-VT5, based on the T5 architecture, that overcomes the limitations of current methods to process long multi-page documents. The proposed method is based on a hierarchical transformer architecture where the encoder summarizes the most relevant information of every page and then, the decoder takes this summarized information to generate the final answer. Through extensive experimentation, we demonstrate that our method is able, in a single stage, to answer the questions and provide the page that contains the relevant information to find the answer, which can be used as a kind of explainability measure. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
ISSN 0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.155; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TKV2023 |
Serial |
3825 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohamed Ali Souibgui; Y.Kessentini |
|
|
Title |
DE-GAN: A Conditional Generative Adversarial Network for Document Enhancement |
Type |
Journal Article |
|
Year |
2022 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
44 |
Issue |
3 |
Pages |
1180-1191 |
|
|
Keywords |
|
|
|
Abstract |
Documents often exhibit various forms of degradation, which make it hard to be read and substantially deteriorate the performance of an OCR system. In this paper, we propose an effective end-to-end framework named Document Enhancement Generative Adversarial Networks (DE-GAN) that uses the conditional GANs (cGANs) to restore severely degraded document images. To the best of our knowledge, this practice has not been studied within the context of generative adversarial deep networks. We demonstrate that, in different tasks (document clean up, binarization, deblurring and watermark removal), DE-GAN can produce an enhanced version of the degraded document with a high quality. In addition, our approach provides consistent improvements compared to state-of-the-art methods over the widely used DIBCO 2013, DIBCO 2017 and H-DIBCO 2018 datasets, proving its ability to restore a degraded document image to its ideal condition. The obtained results on a wide variety of degradation reveal the flexibility of the proposed model to be exploited in other document enhancement problems. |
|
|
Address |
1 March 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 602.230; 600.121; 600.140 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SoK2022 |
Serial |
3454 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes |
|
|
Title |
Hierarchical graphs for coarse-to-fine error tolerant matching |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
134 |
Issue |
|
Pages |
116-124 |
|
|
Keywords |
Hierarchical graph representation; Coarse-to-fine graph matching; Graph-based retrieval |
|
|
Abstract |
During the last years, graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their ability to capture both structural and appearance-based information. Thus, they provide a greater representational power than classical statistical frameworks. However, graph-based representations leads to high computational complexities usually dealt by graph embeddings or approximated matching techniques. Despite their representational power, they are very sensitive to noise and small variations of the input image. With the aim to cope with the time complexity and the variability present in the generated graphs, in this paper we propose to construct a novel hierarchical graph representation. Graph clustering techniques adapted from social media analysis have been used in order to contract a graph at different abstraction levels while keeping information about the topology. Abstract nodes attributes summarise information about the contracted graph partition. For the proposed representations, a coarse-to-fine matching technique is defined. Hence, small graphs are used as a filtering before more accurate matching methods are applied. This approach has been validated in real scenarios such as classification of colour images or retrieval of handwritten words (i.e. word spotting). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.097; 601.302; 603.057; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLF2020 |
Serial |
3349 |
|
Permanent link to this record |
|
|
|
|
Author |
Ruben Tito; Dimosthenis Karatzas; Ernest Valveny |
|
|
Title |
Hierarchical multimodal transformers for Multipage DocVQA |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
144 |
Issue |
109834 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Existing work on DocVQA only considers single-page documents. However, in real applications documents are mostly composed of multiple pages that should be processed altogether. In this work, we propose a new multimodal hierarchical method Hi-VT5, that overcomes the limitations of current methods to process long multipage documents. In contrast to previous hierarchical methods that focus on different semantic granularity (He et al., 2021) or different subtasks (Zhou et al., 2022) used in image classification. Our method is a hierarchical transformer architecture where the encoder learns to summarize the most relevant information of every page and then, the decoder uses this summarized representation to generate the final answer, following a bottom-up approach. Moreover, due to the lack of multipage DocVQA datasets, we also introduce MP-DocVQA, an extension of SP-DocVQA where questions are posed over multipage documents instead of single pages. Through extensive experimentation, we demonstrate that Hi-VT5 is able, in a single stage, to answer the questions and provide the page that contains the answer, which can be used as a kind of explainability measure. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ TKV2023 |
Serial |
3836 |
|
Permanent link to this record |