|
Records |
Links |
|
Author |
Antonio Lopez; Ernest Valveny; Juan J. Villanueva |

|
|
Title |
Real-time quality control of surgical material packaging by artificial vision |
Type |
Journal Article |
|
Year |
2005 |
Publication |
Assembly Automation |
Abbreviated Journal |
|
|
|
Volume |
25 |
Issue |
3 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
IF: 0.061) |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;DAG |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ LVV2005 |
Serial |
552 |
|
Permanent link to this record |
|
|
|
|
Author |
Arka Ujjal Dey; Suman Ghosh; Ernest Valveny; Gaurav Harit |


|
|
Title |
Beyond Visual Semantics: Exploring the Role of Scene Text in Image Understanding |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
149 |
Issue |
|
Pages |
164-171 |
|
|
Keywords |
|
|
|
Abstract  |
Images with visual and scene text content are ubiquitous in everyday life. However, current image interpretation systems are mostly limited to using only the visual features, neglecting to leverage the scene text content. In this paper, we propose to jointly use scene text and visual channels for robust semantic interpretation of images. We do not only extract and encode visual and scene text cues, but also model their interplay to generate a contextual joint embedding with richer semantics. The contextual embedding thus generated is applied to retrieval and classification tasks on multimedia images, with scene text content, to demonstrate its effectiveness. In the retrieval framework, we augment our learned text-visual semantic representation with scene text cues, to mitigate vocabulary misses that may have occurred during the semantic embedding. To deal with irrelevant or erroneous recognition of scene text, we also apply query-based attention to our text channel. We show how the multi-channel approach, involving visual semantics and scene text, improves upon state of the art. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DGV2021 |
Serial |
3364 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Gordo; Florent Perronnin; Yunchao Gong; Svetlana Lazebnik |


|
|
Title |
Asymmetric Distances for Binary Embeddings |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
36 |
Issue |
1 |
Pages |
33-47 |
|
|
Keywords |
|
|
|
Abstract  |
In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes which binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances which are applicable to a wide variety of embedding techniques including Locality Sensitive Hashing (LSH), Locality Sensitive Binary Codes (LSBC), Spectral Hashing (SH), PCA Embedding (PCAE), PCA Embedding with random rotations (PCAE-RR), and PCA Embedding with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.045; 605.203; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GPG2014 |
Serial |
2272 |
|
Permanent link to this record |
|
|
|
|
Author |
S. Chanda; Umapada Pal; Oriol Ramos Terrades |

|
|
Title |
Word-Wise Thai and Roman Script Identification |
Type |
Journal |
|
Year |
2009 |
Publication |
ACM Transactions on Asian Language Information Processing |
Abbreviated Journal |
TALIP |
|
|
Volume |
8 |
Issue |
3 |
Pages |
1-21 |
|
|
Keywords |
|
|
|
Abstract  |
In some Thai documents, a single text line of a printed document page may contain words of both Thai and Roman scripts. For the Optical Character Recognition (OCR) of such a document page it is better to identify, at first, Thai and Roman script portions and then to use individual OCR systems of the respective scripts on these identified portions. In this article, an SVM-based method is proposed for identification of word-wise printed Roman and Thai scripts from a single line of a document page. Here, at first, the document is segmented into lines and then lines are segmented into character groups (words). In the proposed scheme, we identify the script of a character group combining different character features obtained from structural shape, profile behavior, component overlapping information, topological properties, and water reservoir concept, etc. Based on the experiment on 10,000 data (words) we obtained 99.62% script identification accuracy from the proposed scheme. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1530-0226 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ CPR2009f |
Serial |
1869 |
|
Permanent link to this record |
|
|
|
|
Author |
Palaiahnakote Shivakumara; Anjan Dutta; Trung Quy Phan; Chew Lim Tan; Umapada Pal |

|
|
Title |
A Novel Mutual Nearest Neighbor based Symmetry for Text Frame Classification in Video |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
44 |
Issue |
8 |
Pages |
1671-1683 |
|
|
Keywords |
|
|
|
Abstract  |
In the field of multimedia retrieval in video, text frame classification is essential for text detection, event detection, event boundary detection, etc. We propose a new text frame classification method that introduces a combination of wavelet and median moment with k-means clustering to select probable text blocks among 16 equally sized blocks of a video frame. The same feature combination is used with a new Max–Min clustering at the pixel level to choose probable dominant text pixels in the selected probable text blocks. For the probable text pixels, a so-called mutual nearest neighbor based symmetry is explored with a four-quadrant formation centered at the centroid of the probable dominant text pixels to know whether a block is a true text block or not. If a frame produces at least one true text block then it is considered as a text frame otherwise it is a non-text frame. Experimental results on different text and non-text datasets including two public datasets and our own created data show that the proposed method gives promising results in terms of recall and precision at the block and frame levels. Further, we also show how existing text detection methods tend to misclassify non-text frames as text frames in term of recall and precision at both the block and frame levels. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ SDP2011 |
Serial |
1727 |
|
Permanent link to this record |