toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Katerine Diaz; Jesus Martinez del Rincon; Marçal Rusiñol; Aura Hernandez-Sabate edit  doi
openurl 
  Title Feature Extraction by Using Dual-Generalized Discriminative Common Vectors Type Journal Article
  Year (down) 2019 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 61 Issue 3 Pages 331-351  
  Keywords Online feature extraction; Generalized discriminative common vectors; Dual learning; Incremental learning; Decremental learning  
  Abstract In this paper, a dual online subspace-based learning method called dual-generalized discriminative common vectors (Dual-GDCV) is presented. The method extends incremental GDCV by exploiting simultaneously both the concepts of incremental and decremental learning for supervised feature extraction and classification. Our methodology is able to update the feature representation space without recalculating the full projection or accessing the previously processed training data. It allows both adding information and removing unnecessary data from a knowledge base in an efficient way, while retaining the previously acquired knowledge. The proposed method has been theoretically proved and empirically validated in six standard face recognition and classification datasets, under two scenarios: (1) removing and adding samples of existent classes, and (2) removing and adding new classes to a classification problem. Results show a considerable computational gain without compromising the accuracy of the model in comparison with both batch methodologies and other state-of-art adaptive methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.084 Approved no  
  Call Number Admin @ si @ DRR2019 Serial 3172  
Permanent link to this record
 

 
Author Jiaolong Xu; Liang Xiao; Antonio Lopez edit  doi
openurl 
  Title Self-supervised Domain Adaptation for Computer Vision Tasks Type Journal Article
  Year (down) 2019 Publication IEEE ACCESS Abbreviated Journal ACCESS  
  Volume 7 Issue Pages  
  Keywords  
  Abstract Recent progress of self-supervised visual representation learning has achieved remarkable success on many challenging computer vision benchmarks. However, whether these techniques can be used for domain adaptation has not been explored. In this work, we propose a generic method for self-supervised domain adaptation, using object recognition and semantic segmentation of urban scenes as use cases. Focusing on simple pretext/auxiliary tasks (e.g. image rotation prediction), we assess different learning strategies to improve domain adaptation effectiveness by self-supervision. Additionally, we propose two complementary strategies to further boost the domain adaptation accuracy on semantic segmentation within our method, consisting of prediction layer alignment and batch normalization calibration. The experimental results show adaptation levels comparable to most studied domain adaptation methods, thus, bringing self-supervision as a new alternative for reaching domain adaptation. The code is available at this link. https://github.com/Jiaolong/self-supervised-da.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ XXL2019 Serial 3302  
Permanent link to this record
 

 
Author Cesar de Souza; Adrien Gaidon; Yohann Cabon; Naila Murray; Antonio Lopez edit  doi
openurl 
  Title Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models Type Journal Article
  Year (down) 2019 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ SGC2019 Serial 3303  
Permanent link to this record
 

 
Author Daniel Hernandez; Lukas Schneider; P. Cebrian; A. Espinosa; David Vazquez; Antonio Lopez; Uwe Franke; Marc Pollefeys; Juan Carlos Moure edit  openurl
  Title Slanted Stixels: A way to represent steep streets Type Journal Article
  Year (down) 2019 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ HSC2019 Serial 3304  
Permanent link to this record
 

 
Author Zhijie Fang; Antonio Lopez edit  openurl
  Title Intention Recognition of Pedestrians and Cyclists by 2D Pose Estimation Type Journal Article
  Year (down) 2019 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ FaL2019 Serial 3305  
Permanent link to this record
 

 
Author Akhil Gurram; Onay Urfalioglu; Ibrahim Halfaoui; Fahd Bouzaraa; Antonio Lopez edit  openurl
  Title Artificial Intelligence Enables Monocular Depth Estimation Type Journal Article
  Year (down) 2019 Publication IEEE Intelligent Transportation Systems Magazine Abbreviated Journal ITSM  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ GUH2019 Serial 3306  
Permanent link to this record
 

 
Author Marçal Rusiñol; J. Chazalon; Katerine Diaz edit   pdf
doi  openurl
  Title Augmented Songbook: an Augmented Reality Educational Application for Raising Music Awareness Type Journal Article
  Year (down) 2018 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 77 Issue 11 Pages 13773-13798  
  Keywords Augmented reality; Document image matching; Educational applications  
  Abstract This paper presents the development of an Augmented Reality mobile application which aims at sensibilizing young children to abstract concepts of music. Such concepts are, for instance, the musical notation or the idea of rhythm. Recent studies in Augmented Reality for education suggest that such technologies have multiple benefits for students, including younger ones. As mobile document image acquisition and processing gains maturity on mobile platforms, we explore how it is possible to build a markerless and real-time application to augment the physical documents with didactic animations and interactive virtual content. Given a standard image processing pipeline, we compare the performance of different local descriptors at two key stages of the process. Results suggest alternatives to the SIFT local descriptors, regarding result quality and computational efficiency, both for document model identification and perspective transform estimation. All experiments are performed on an original and public dataset we introduce here.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.084; 600.121; 600.118 Approved no  
  Call Number Admin @ si @ RCD2018 Serial 2996  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Marçal Rusiñol; Francesc J. Ferri edit   pdf
doi  openurl
  Title Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction Type Journal Article
  Year (down) 2018 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 60 Issue 4 Pages 512-524  
  Keywords  
  Abstract This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.086; 600.130; 600.121; 600.118 Approved no  
  Call Number Admin @ si @ DMH2018a Serial 3062  
Permanent link to this record
 

 
Author Katerine Diaz; Francesc J. Ferri; Aura Hernandez-Sabate edit  url
doi  openurl
  Title An overview of incremental feature extraction methods based on linear subspaces Type Journal Article
  Year (down) 2018 Publication Knowledge-Based Systems Abbreviated Journal KBS  
  Volume 145 Issue Pages 219-235  
  Keywords  
  Abstract With the massive explosion of machine learning in our day-to-day life, incremental and adaptive learning has become a major topic, crucial to keep up-to-date and improve classification models and their corresponding feature extraction processes. This paper presents a categorized overview of incremental feature extraction based on linear subspace methods which aim at incorporating new information to the already acquired knowledge without accessing previous data. Specifically, this paper focuses on those linear dimensionality reduction methods with orthogonal matrix constraints based on global loss function, due to the extensive use of their batch approaches versus other linear alternatives. Thus, we cover the approaches derived from Principal Components Analysis, Linear Discriminative Analysis and Discriminative Common Vector methods. For each basic method, its incremental approaches are differentiated according to the subspace model and matrix decomposition involved in the updating process. Besides this categorization, several updating strategies are distinguished according to the amount of data used to update and to the fact of considering a static or dynamic number of classes. Moreover, the specific role of the size/dimension ratio in each method is considered. Finally, computational complexity, experimental setup and the accuracy rates according to published results are compiled and analyzed, and an empirical evaluation is done to compare the best approach of each kind.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-7051 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ DFH2018 Serial 3090  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Debora Gil edit  doi
openurl 
  Title Continuous head pose estimation using manifold subspace embedding and multivariate regression Type Journal Article
  Year (down) 2018 Publication IEEE ACCESS Abbreviated Journal ACCESS  
  Volume 6 Issue Pages 18325 - 18334  
  Keywords Head Pose estimation; HOG features; Generalized Discriminative Common Vectors; B-splines; Multiple linear regression  
  Abstract In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch head angles from raw facial images. Our approach is based on manifold learningbased methods, due to their promising generalization properties shown for face modelling from images. The method combines histograms of oriented gradients, generalized discriminative common vectors and continuous local regression to achieve successful performance. Our proposal was tested on multiple standard face datasets, as well as in a realistic scenario. Results show a considerable performance improvement and a higher consistence of our model in comparison with other state-of-art methods, with angular errors varying between 9 and 17 degrees.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-3536 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ DMH2018b Serial 3091  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: