|
Records |
Links |
|
Author |
Jiaolong Xu; David Vazquez; Antonio Lopez; Javier Marin; Daniel Ponsa |
|
|
Title |
Learning a Part-based Pedestrian Detector in Virtual World |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
15 |
Issue |
5 |
Pages |
2121-2131 |
|
|
Keywords |
Domain Adaptation; Pedestrian Detection; Virtual Worlds |
|
|
Abstract |
Detecting pedestrians with on-board vision systems is of paramount interest for assisting drivers to prevent vehicle-to-pedestrian accidents. The core of a pedestrian detector is its classification module, which aims at deciding if a given image window contains a pedestrian. Given the difficulty of this task, many classifiers have been proposed during the last fifteen years. Among them, the so-called (deformable) part-based classifiers including multi-view modeling are usually top ranked in accuracy. Training such classifiers is not trivial since a proper aspect clustering and spatial part alignment of the pedestrian training samples are crucial for obtaining an accurate classifier. In this paper, first we perform automatic aspect clustering and part alignment by using virtual-world pedestrians, i.e., human annotations are not required. Second, we use a mixture-of-parts approach that allows part sharing among different aspects. Third, these proposals are integrated in a learning framework which also allows to incorporate real-world training data to perform domain adaptation between virtual- and real-world cameras. Overall, the obtained results on four popular on-board datasets show that our proposal clearly outperforms the state-of-the-art deformable part-based detector known as latent SVM. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1931-0587 |
ISBN |
978-1-4673-2754-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ XVL2014 |
Serial |
2433 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Manuel Alvarez; Antonio Lopez; Theo Gevers; Felipe Lumbreras |
|
|
Title |
Combining Priors, Appearance and Context for Road Detection |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
15 |
Issue |
3 |
Pages |
1168-1178 |
|
|
Keywords |
Illuminant invariance; lane markings; road detection; road prior; road scene understanding; vanishing point; 3-D scene layout |
|
|
Abstract |
Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning.
Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1524-9050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076;ISE |
Approved |
no |
|
|
Call Number |
Admin @ si @ ALG2014 |
Serial |
2501 |
|
Permanent link to this record |
|
|
|
|
Author |
Naveen Onkarappa; Angel Sappa |
|
|
Title |
Speed and Texture: An Empirical Study on Optical-Flow Accuracy in ADAS Scenarios |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
15 |
Issue |
1 |
Pages |
136-147 |
|
|
Keywords |
|
|
|
Abstract |
IF: 3.064
Increasing mobility in everyday life has led to the concern for the safety of automotives and human life. Computer vision has become a valuable tool for developing driver assistance applications that target such a concern. Many such vision-based assisting systems rely on motion estimation, where optical flow has shown its potential. A variational formulation of optical flow that achieves a dense flow field involves a data term and regularization terms. Depending on the image sequence, the regularization has to appropriately be weighted for better accuracy of the flow field. Because a vehicle can be driven in different kinds of environments, roads, and speeds, optical-flow estimation has to be accurately computed in all such scenarios. In this paper, we first present the polar representation of optical flow, which is quite suitable for driving scenarios due to the possibility that it offers to independently update regularization factors in different directional components. Then, we study the influence of vehicle speed and scene texture on optical-flow accuracy. Furthermore, we analyze the relationships of these specific characteristics on a driving scenario (vehicle speed and road texture) with the regularization weights in optical flow for better accuracy. As required by the work in this paper, we have generated several synthetic sequences along with ground-truth flow fields. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1524-9050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ OnS2014a |
Serial |
2386 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Manuel Alvarez; Theo Gevers; Ferran Diego; Antonio Lopez |
|
|
Title |
Road Geometry Classification by Adaptative Shape Models |
Type |
Journal Article |
|
Year |
2013 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
14 |
Issue |
1 |
Pages |
459-468 |
|
|
Keywords |
road detection |
|
|
Abstract |
Vision-based road detection is important for different applications in transportation, such as autonomous driving, vehicle collision warning, and pedestrian crossing detection. Common approaches to road detection are based on low-level road appearance (e.g., color or texture) and neglect of the scene geometry and context. Hence, using only low-level features makes these algorithms highly depend on structured roads, road homogeneity, and lighting conditions. Therefore, the aim of this paper is to classify road geometries for road detection through the analysis of scene composition and temporal coherence. Road geometry classification is proposed by building corresponding models from training images containing prototypical road geometries. We propose adaptive shape models where spatial pyramids are steered by the inherent spatial structure of road images. To reduce the influence of lighting variations, invariant features are used. Large-scale experiments show that the proposed road geometry classifier yields a high recognition rate of 73.57% ± 13.1, clearly outperforming other state-of-the-art methods. Including road shape information improves road detection results over existing appearance-based methods. Finally, it is shown that invariant features and temporal information provide robustness against disturbing imaging conditions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1524-9050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;ISE |
Approved |
no |
|
|
Call Number |
Admin @ si @ AGD2013;; ADAS @ adas @ |
Serial |
2269 |
|
Permanent link to this record |
|
|
|
|
Author |
Fadi Dornaika; Jose Manuel Alvarez; Angel Sappa; Antonio Lopez |
|
|
Title |
A New Framework for Stereo Sensor Pose through Road Segmentation and Registration |
Type |
Journal Article |
|
Year |
2011 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
12 |
Issue |
4 |
Pages |
954-966 |
|
|
Keywords |
road detection |
|
|
Abstract |
This paper proposes a new framework for real-time estimation of the onboard stereo head's position and orientation relative to the road surface, which is required for any advanced driver-assistance application. This framework can be used with all road types: highways, urban, etc. Unlike existing works that rely on feature extraction in either the image domain or 3-D space, we propose a framework that directly estimates the unknown parameters from the stream of stereo pairs' brightness. The proposed approach consists of two stages that are invoked for every stereo frame. The first stage segments the road region in one monocular view. The second stage estimates the camera pose using a featureless registration between the segmented monocular road region and the other view in the stereo pair. This paper has two main contributions. The first contribution combines a road segmentation algorithm with a registration technique to estimate the online stereo camera pose. The second contribution solves the registration using a featureless method, which is carried out using two different optimization techniques: 1) the differential evolution algorithm and 2) the Levenberg-Marquardt (LM) algorithm. We provide experiments and evaluations of performance. The results presented show the validity of our proposed framework. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1524-9050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ DAS2011; ADAS @ adas @ das2011a |
Serial |
1833 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Manuel Alvarez; Antonio Lopez |
|
|
Title |
Road Detection Based on Illuminant Invariance |
Type |
Journal Article |
|
Year |
2011 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
12 |
Issue |
1 |
Pages |
184-193 |
|
|
Keywords |
road detection |
|
|
Abstract |
By using an onboard camera, it is possible to detect the free road surface ahead of the ego-vehicle. Road detection is of high relevance for autonomous driving, road departure warning, and supporting driver-assistance systems such as vehicle and pedestrian detection. The key for vision-based road detection is the ability to classify image pixels as belonging or not to the road surface. Identifying road pixels is a major challenge due to the intraclass variability caused by lighting conditions. A particularly difficult scenario appears when the road surface has both shadowed and nonshadowed areas. Accordingly, we propose a novel approach to vision-based road detection that is robust to shadows. The novelty of our approach relies on using a shadow-invariant feature space combined with a model-based classifier. The model is built online to improve the adaptability of the algorithm to the current lighting and the presence of other vehicles in the scene. The proposed algorithm works in still images and does not depend on either road shape or temporal restrictions. Quantitative and qualitative experiments on real-world road sequences with heavy traffic and shadows show that the method is robust to shadows and lighting variations. Moreover, the proposed method provides the highest performance when compared with hue-saturation-intensity (HSI)-based algorithms. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ AlL2011 |
Serial |
1456 |
|
Permanent link to this record |
|
|
|
|
Author |
Fahad Shahbaz Khan; Jiaolong Xu; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Antonio Lopez |
|
|
Title |
Recognizing Actions through Action-specific Person Detection |
Type |
Journal Article |
|
Year |
2015 |
Publication |
IEEE Transactions on Image Processing |
Abbreviated Journal |
TIP |
|
|
Volume |
24 |
Issue |
11 |
Pages |
4422-4432 |
|
|
Keywords |
|
|
|
Abstract |
Action recognition in still images is a challenging problem in computer vision. To facilitate comparative evaluation independently of person detection, the standard evaluation protocol for action recognition uses an oracle person detector to obtain perfect bounding box information at both training and test time. The assumption is that, in practice, a general person detector will provide candidate bounding boxes for action recognition. In this paper, we argue that this paradigm is suboptimal and that action class labels should already be considered during the detection stage. Motivated by the observation that body pose is strongly conditioned on action class, we show that: 1) the existing state-of-the-art generic person detectors are not adequate for proposing candidate bounding boxes for action classification; 2) due to limited training examples, the direct training of action-specific person detectors is also inadequate; and 3) using only a small number of labeled action examples, the transfer learning is able to adapt an existing detector to propose higher quality bounding boxes for subsequent action classification. To the best of our knowledge, we are the first to investigate transfer learning for the task of action-specific person detection in still images. We perform extensive experiments on two benchmark data sets: 1) Stanford-40 and 2) PASCAL VOC 2012. For the action detection task (i.e., both person localization and classification of the action performed), our approach outperforms methods based on general person detection by 5.7% mean average precision (MAP) on Stanford-40 and 2.1% MAP on PASCAL VOC 2012. Our approach also significantly outperforms the state of the art with a MAP of 45.4% on Stanford-40 and 31.4% on PASCAL VOC 2012. We also evaluate our action detection approach for the task of action classification (i.e., recognizing actions without localizing them). For this task, our approach, without using any ground-truth person localization at test tim- , outperforms on both data sets state-of-the-art methods, which do use person locations. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1057-7149 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; LAMP; 600.076; 600.079;CIC |
Approved |
no |
|
|
Call Number |
Admin @ si @ KXR2015 |
Serial |
2668 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Oliveira; Angel Sappa; Victor Santos |
|
|
Title |
A probabilistic approach for color correction in image mosaicking applications |
Type |
Journal Article |
|
Year |
2015 |
Publication |
IEEE Transactions on Image Processing |
Abbreviated Journal |
TIP |
|
|
Volume |
14 |
Issue |
2 |
Pages |
508 - 523 |
|
|
Keywords |
Color correction; image mosaicking; color transfer; color palette mapping functions |
|
|
Abstract |
Image mosaicking applications require both geometrical and photometrical registrations between the images that compose the mosaic. This paper proposes a probabilistic color correction algorithm for correcting the photometrical disparities. First, the image to be color corrected is segmented into several regions using mean shift. Then, connected regions are extracted using a region fusion algorithm. Local joint image histograms of each region are modeled as collections of truncated Gaussians using a maximum likelihood estimation procedure. Then, local color palette mapping functions are computed using these sets of Gaussians. The color correction is performed by applying those functions to all the regions of the image. An extensive comparison with ten other state of the art color correction algorithms is presented, using two different image pair data sets. Results show that the proposed approach obtains the best average scores in both data sets and evaluation metrics and is also the most robust to failures. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1057-7149 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ OSS2015b |
Serial |
2554 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohammad Rouhani; Angel Sappa; E. Boyer |
|
|
Title |
Implicit B-Spline Surface Reconstruction |
Type |
Journal Article |
|
Year |
2015 |
Publication |
IEEE Transactions on Image Processing |
Abbreviated Journal |
TIP |
|
|
Volume |
24 |
Issue |
1 |
Pages |
22 - 32 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a fast and flexible curve, and surface reconstruction technique based on implicit B-spline. This representation does not require any parameterization and it is locally supported. This fact has been exploited in this paper to propose a reconstruction technique through solving a sparse system of equations. This method is further accelerated to reduce the dimension to the active control lattice. Moreover, the surface smoothness and user interaction are allowed for controlling the surface. Finally, a novel weighting technique has been introduced in order to blend small patches and smooth them in the overlapping regions. The whole framework is very fast and efficient and can handle large cloud of points with very low computational cost. The experimental results show the flexibility and accuracy of the proposed algorithm to describe objects with complex topologies. Comparisons with other fitting methods highlight the superiority of the proposed approach in the presence of noise and missing data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1057-7149 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RSB2015 |
Serial |
2541 |
|
Permanent link to this record |
|
|
|
|
Author |
Fahad Shahbaz Khan; Joost Van de Weijer; Muhammad Anwer Rao; Michael Felsberg; Carlo Gatta |
|
|
Title |
Semantic Pyramids for Gender and Action Recognition |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Image Processing |
Abbreviated Journal |
TIP |
|
|
Volume |
23 |
Issue |
8 |
Pages |
3633-3645 |
|
|
Keywords |
|
|
|
Abstract |
Person description is a challenging problem in computer vision. We investigated two major aspects of person description: 1) gender and 2) action recognition in still images. Most state-of-the-art approaches for gender and action recognition rely on the description of a single body part, such as face or full-body. However, relying on a single body part is suboptimal due to significant variations in scale, viewpoint, and pose in real-world images. This paper proposes a semantic pyramid approach for pose normalization. Our approach is fully automatic and based on combining information from full-body, upper-body, and face regions for gender and action recognition in still images. The proposed approach does not require any annotations for upper-body and face of a person. Instead, we rely on pretrained state-of-the-art upper-body and face detectors to automatically extract semantic information of a person. Given multiple bounding boxes from each body part detector, we then propose a simple method to select the best candidate bounding box, which is used for feature extraction. Finally, the extracted features from the full-body, upper-body, and face regions are combined into a single representation for classification. To validate the proposed approach for gender recognition, experiments are performed on three large data sets namely: 1) human attribute; 2) head-shoulder; and 3) proxemics. For action recognition, we perform experiments on four data sets most used for benchmarking action recognition in still images: 1) Sports; 2) Willow; 3) PASCAL VOC 2010; and 4) Stanford-40. Our experiments clearly demonstrate that the proposed approach, despite its simplicity, outperforms state-of-the-art methods for gender and action recognition. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1057-7149 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
CIC; LAMP; 601.160; 600.074; 600.079;MILAB;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ KWR2014 |
Serial |
2507 |
|
Permanent link to this record |