|
Records |
Links ![sorted by URL field, descending order (down)](http://refbase.cvc.uab.es/img/sort_desc.gif) |
|
Author |
Antonio Lopez; Ernest Valveny; Juan J. Villanueva |
![goto web page url](http://refbase.cvc.uab.es/img/www.gif)
|
|
Title |
Real-time quality control of surgical material packaging by artificial vision |
Type |
Journal Article |
|
Year |
2005 |
Publication |
Assembly Automation |
Abbreviated Journal |
|
|
|
Volume |
25 |
Issue |
3 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
IF: 0.061) |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;DAG |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ LVV2005 |
Serial |
552 |
|
Permanent link to this record |
|
|
|
|
Author |
Angel Sappa |
![goto web page url](http://refbase.cvc.uab.es/img/www.gif)
|
|
Title |
Unsupervised Contour Closure Algorithm for Range Image Edge-Based Segmentation |
Type |
Journal |
|
Year |
2006 |
Publication |
IEEE Transactions on Image Processing, 15(2):377–384 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ Sap2006a |
Serial |
637 |
|
Permanent link to this record |
|
|
|
|
Author |
A. Restrepo; Angel Sappa; M. Devy |
![goto web page url](http://refbase.cvc.uab.es/img/www.gif)
|
|
Title |
Edge registration versus triangular mesh registration, a comparative study |
Type |
Journal |
|
Year |
2005 |
Publication |
Signal Processing: Image Communication 20: 853–868 (IF: 1.264) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ RSD2005 |
Serial |
567 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Amores; Petia Radeva |
![goto web page url](http://refbase.cvc.uab.es/img/www.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Registration and Retrieval of Highly Elastic Bodies using Contextual Information |
Type |
Journal Article |
|
Year |
2005 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
26 |
Issue |
11 |
Pages |
1720–1731 |
|
|
Keywords |
|
|
|
Abstract |
IF: 1.138 |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;MILAB |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ AmR2005b |
Serial |
592 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Francesc J. Ferri; Aura Hernandez-Sabate |
![download PDF file pdf](http://refbase.cvc.uab.es/img/file_PDF.gif)
![goto web page (via DOI) doi](http://refbase.cvc.uab.es/img/doi.gif)
|
|
Title |
An overview of incremental feature extraction methods based on linear subspaces |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Knowledge-Based Systems |
Abbreviated Journal |
KBS |
|
|
Volume |
145 |
Issue |
|
Pages |
219-235 |
|
|
Keywords |
|
|
|
Abstract |
With the massive explosion of machine learning in our day-to-day life, incremental and adaptive learning has become a major topic, crucial to keep up-to-date and improve classification models and their corresponding feature extraction processes. This paper presents a categorized overview of incremental feature extraction based on linear subspace methods which aim at incorporating new information to the already acquired knowledge without accessing previous data. Specifically, this paper focuses on those linear dimensionality reduction methods with orthogonal matrix constraints based on global loss function, due to the extensive use of their batch approaches versus other linear alternatives. Thus, we cover the approaches derived from Principal Components Analysis, Linear Discriminative Analysis and Discriminative Common Vector methods. For each basic method, its incremental approaches are differentiated according to the subspace model and matrix decomposition involved in the updating process. Besides this categorization, several updating strategies are distinguished according to the amount of data used to update and to the fact of considering a static or dynamic number of classes. Moreover, the specific role of the size/dimension ratio in each method is considered. Finally, computational complexity, experimental setup and the accuracy rates according to published results are compiled and analyzed, and an empirical evaluation is done to compare the best approach of each kind. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0950-7051 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DFH2018 |
Serial |
3090 |
|
Permanent link to this record |
|
|
|
|
Author |
Iban Berganzo-Besga; Hector A. Orengo; Felipe Lumbreras; Aftab Alam; Rosie Campbell; Petrus J Gerrits; Jonas Gregorio de Souza; Afifa Khan; Maria Suarez Moreno; Jack Tomaney; Rebecca C Roberts; Cameron A Petrie |
![goto web page url](http://refbase.cvc.uab.es/img/www.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Curriculum learning-based strategy for low-density archaeological mound detection from historical maps in India and Pakistan |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Scientific Reports |
Abbreviated Journal |
ScR |
|
|
Volume |
13 |
Issue |
|
Pages |
11257 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents two algorithms for the large-scale automatic detection and instance segmentation of potential archaeological mounds on historical maps. Historical maps present a unique source of information for the reconstruction of ancient landscapes. The last 100 years have seen unprecedented landscape modifications with the introduction and large-scale implementation of mechanised agriculture, channel-based irrigation schemes, and urban expansion to name but a few. Historical maps offer a window onto disappearing landscapes where many historical and archaeological elements that no longer exist today are depicted. The algorithms focus on the detection and shape extraction of mound features with high probability of being archaeological settlements, mounds being one of the most commonly documented archaeological features to be found in the Survey of India historical map series, although not necessarily recognised as such at the time of surveying. Mound features with high archaeological potential are most commonly depicted through hachures or contour-equivalent form-lines, therefore, an algorithm has been designed to detect each of those features. Our proposed approach addresses two of the most common issues in archaeological automated survey, the low-density of archaeological features to be detected, and the small amount of training data available. It has been applied to all types of maps available of the historic 1″ to 1-mile series, thus increasing the complexity of the detection. Moreover, the inclusion of synthetic data, along with a Curriculum Learning strategy, has allowed the algorithm to better understand what the mound features look like. Likewise, a series of filters based on topographic setting, form, and size have been applied to improve the accuracy of the models. The resulting algorithms have a recall value of 52.61% and a precision of 82.31% for the hachure mounds, and a recall value of 70.80% and a precision of 70.29% for the form-line mounds, which allowed the detection of nearly 6000 mound features over an area of 470,500 km2, the largest such approach to have ever been applied. If we restrict our focus to the maps most similar to those used in the algorithm training, we reach recall values greater than 60% and precision values greater than 90%. This approach has shown the potential to implement an adaptive algorithm that allows, after a small amount of retraining with data detected from a new map, a better general mound feature detection in the same map. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MSIAU;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ BOL2023 |
Serial |
3976 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Luis Gomez; Gabriel Villalonga; Antonio Lopez |
![goto web page url](http://refbase.cvc.uab.es/img/www.gif)
|
|
Title |
Co-Training for Unsupervised Domain Adaptation of Semantic Segmentation Models |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Sensors – Special Issue on “Machine Learning for Autonomous Driving Perception and Prediction” |
Abbreviated Journal |
SENS |
|
|
Volume |
23 |
Issue |
2 |
Pages |
621 |
|
|
Keywords |
Domain adaptation; semi-supervised learning; Semantic segmentation; Autonomous driving |
|
|
Abstract |
Semantic image segmentation is a central and challenging task in autonomous driving, addressed by training deep models. Since this training draws to a curse of human-based image labeling, using synthetic images with automatically generated labels together with unlabeled real-world images is a promising alternative. This implies to address an unsupervised domain adaptation (UDA) problem. In this paper, we propose a new co-training procedure for synth-to-real UDA of semantic
segmentation models. It consists of a self-training stage, which provides two domain-adapted models, and a model collaboration loop for the mutual improvement of these two models. These models are then used to provide the final semantic segmentation labels (pseudo-labels) for the real-world images. The overall
procedure treats the deep models as black boxes and drives their collaboration at the level of pseudo-labeled target images, i.e., neither modifying loss functions is required, nor explicit feature alignment. We test our proposal on standard synthetic and real-world datasets for on-board semantic segmentation. Our
procedure shows improvements ranging from ∼13 to ∼26 mIoU points over baselines, so establishing new state-of-the-art results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; no proj |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVL2023 |
Serial |
3705 |
|
Permanent link to this record |
|
|
|
|
Author |
Gabriel Villalonga; Joost Van de Weijer; Antonio Lopez |
![goto web page url](http://refbase.cvc.uab.es/img/www.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Recognizing new classes with synthetic data in the loop: application to traffic sign recognition |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
20 |
Issue |
3 |
Pages |
583 |
|
|
Keywords |
|
|
|
Abstract |
On-board vision systems may need to increase the number of classes that can be recognized in a relatively short period. For instance, a traffic sign recognition system may suddenly be required to recognize new signs. Since collecting and annotating samples of such new classes may need more time than we wish, especially for uncommon signs, we propose a method to generate these samples by combining synthetic images and Generative Adversarial Network (GAN) technology. In particular, the GAN is trained on synthetic and real-world samples from known classes to perform synthetic-to-real domain adaptation, but applied to synthetic samples of the new classes. Using the Tsinghua dataset with a synthetic counterpart, SYNTHIA-TS, we have run an extensive set of experiments. The results show that the proposed method is indeed effective, provided that we use a proper Convolutional Neural Network (CNN) to perform the traffic sign recognition (classification) task as well as a proper GAN to transform the synthetic images. Here, a ResNet101-based classifier and domain adaptation based on CycleGAN performed extremely well for a ratio∼ 1/4 for new/known classes; even for more challenging ratios such as∼ 4/1, the results are also very positive. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
LAMP; ADAS; 600.118; 600.120;CIC |
Approved |
no |
|
|
Call Number |
Admin @ si @ VWL2020 |
Serial |
3405 |
|
Permanent link to this record |
|
|
|
|
Author |
Daniel Hernandez; Lukas Schneider; P. Cebrian; A. Espinosa; David Vazquez; Antonio Lopez; Uwe Franke; Marc Pollefeys; Juan Carlos Moure |
![download PDF file pdf](http://refbase.cvc.uab.es/img/file_PDF.gif)
![find record details (via OpenURL) openurl](http://refbase.cvc.uab.es/img/xref.gif)
|
|
Title |
Slanted Stixels: A way to represent steep streets |
Type |
Journal Article |
|
Year |
2019 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
127 |
Issue |
|
Pages |
1643–1658 |
|
|
Keywords |
|
|
|
Abstract |
This work presents and evaluates a novel compact scene representation based on Stixels that infers geometric and semantic information. Our approach overcomes the previous rather restrictive geometric assumptions for Stixels by introducing a novel depth model to account for non-flat roads and slanted objects. Both semantic and depth cues are used jointly to infer the scene representation in a sound global energy minimization formulation. Furthermore, a novel approximation scheme is introduced in order to significantly reduce the computational complexity of the Stixel algorithm, and then achieve real-time computation capabilities. The idea is to first perform an over-segmentation of the image, discarding the unlikely Stixel cuts, and apply the algorithm only on the remaining Stixel cuts. This work presents a novel over-segmentation strategy based on a fully convolutional network, which outperforms an approach based on using local extrema of the disparity map. We evaluate the proposed methods in terms of semantic and geometric accuracy as well as run-time on four publicly available benchmark datasets. Our approach maintains accuracy on flat road scene datasets while improving substantially on a novel non-flat road dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118; 600.124 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HSC2019 |
Serial |
3304 |
|
Permanent link to this record |
|
|
|
|
Author |
Adrien Gaidon; Antonio Lopez; Florent Perronnin |
![goto web page url](http://refbase.cvc.uab.es/img/www.gif)
|
|
Title |
The Reasonable Effectiveness of Synthetic Visual Data |
Type |
Journal Article |
|
Year |
2018 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
126 |
Issue |
9 |
Pages |
899–901 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GLP2018 |
Serial |
3180 |
|
Permanent link to this record |