|
Records |
Links |
|
Author |
Javier Marin; David Vazquez; Antonio Lopez; Jaume Amores; Ludmila I. Kuncheva |
|
|
Title |
Occlusion handling via random subspace classifiers for human detection |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Systems, Man, and Cybernetics (Part B) |
Abbreviated Journal |
TSMCB |
|
|
Volume |
44 |
Issue |
3 |
Pages |
342-354 |
|
|
Keywords |
Pedestriand Detection; occlusion handling |
|
|
Abstract |
This paper describes a general method to address partial occlusions for human detection in still images. The Random Subspace Method (RSM) is chosen for building a classifier ensemble robust against partial occlusions. The component classifiers are chosen on the basis of their individual and combined performance. The main contribution of this work lies in our approach’s capability to improve the detection rate when partial occlusions are present without compromising the detection performance on non occluded data. In contrast to many recent approaches, we propose a method which does not require manual labelling of body parts, defining any semantic spatial components, or using additional data coming from motion or stereo. Moreover, the method can be easily extended to other object classes. The experiments are performed on three large datasets: the INRIA person dataset, the Daimler Multicue dataset, and a new challenging dataset, called PobleSec, in which a considerable number of targets are partially occluded. The different approaches are evaluated at the classification and detection levels for both partially occluded and non-occluded data. The experimental results show that our detector outperforms state-of-the-art approaches in the presence of partial occlusions, while offering performance and reliability similar to those of the holistic approach on non-occluded data. The datasets used in our experiments have been made publicly available for benchmarking purposes |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2168-2267 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 605.203; 600.057; 600.054; 601.042; 601.187; 600.076 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ MVL2014 |
Serial |
2213 |
|
Permanent link to this record |
|
|
|
|
Author |
Jiaolong Xu; David Vazquez; Antonio Lopez; Javier Marin; Daniel Ponsa |
|
|
Title |
Learning a Part-based Pedestrian Detector in Virtual World |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
15 |
Issue |
5 |
Pages |
2121-2131 |
|
|
Keywords |
Domain Adaptation; Pedestrian Detection; Virtual Worlds |
|
|
Abstract |
Detecting pedestrians with on-board vision systems is of paramount interest for assisting drivers to prevent vehicle-to-pedestrian accidents. The core of a pedestrian detector is its classification module, which aims at deciding if a given image window contains a pedestrian. Given the difficulty of this task, many classifiers have been proposed during the last fifteen years. Among them, the so-called (deformable) part-based classifiers including multi-view modeling are usually top ranked in accuracy. Training such classifiers is not trivial since a proper aspect clustering and spatial part alignment of the pedestrian training samples are crucial for obtaining an accurate classifier. In this paper, first we perform automatic aspect clustering and part alignment by using virtual-world pedestrians, i.e., human annotations are not required. Second, we use a mixture-of-parts approach that allows part sharing among different aspects. Third, these proposals are integrated in a learning framework which also allows to incorporate real-world training data to perform domain adaptation between virtual- and real-world cameras. Overall, the obtained results on four popular on-board datasets show that our proposal clearly outperforms the state-of-the-art deformable part-based detector known as latent SVM. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1931-0587 |
ISBN |
978-1-4673-2754-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ XVL2014 |
Serial |
2433 |
|
Permanent link to this record |
|
|
|
|
Author |
J.S. Cope; P.Remagnino; S.Mannan; Katerine Diaz; Francesc J. Ferri; P.Wilkin |
|
|
Title |
Reverse Engineering Expert Visual Observations: From Fixations To The Learning Of Spatial Filters With A Neural-Gas Algorithm |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Expert Systems with Applications |
Abbreviated Journal |
EXWA |
|
|
Volume |
40 |
Issue |
17 |
Pages |
6707-6712 |
|
|
Keywords |
Neural gas; Expert vision; Eye-tracking; Fixations |
|
|
Abstract |
Human beings can become experts in performing specific vision tasks, for example, doctors analysing medical images, or botanists studying leaves. With sufficient knowledge and experience, people can become very efficient at such tasks. When attempting to perform these tasks with a machine vision system, it would be highly beneficial to be able to replicate the process which the expert undergoes. Advances in eye-tracking technology can provide data to allow us to discover the manner in which an expert studies an image. This paper presents a first step towards utilizing these data for computer vision purposes. A growing-neural-gas algorithm is used to learn a set of Gabor filters which give high responses to image regions which a human expert fixated on. These filters can then be used to identify regions in other images which are likely to be useful for a given vision task. The algorithm is evaluated by learning filters for locating specific areas of plant leaves. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0957-4174 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ CRM2013 |
Serial |
2438 |
|
Permanent link to this record |
|
|
|
|
Author |
Naveen Onkarappa; Angel Sappa |
|
|
Title |
Synthetic sequences and ground-truth flow field generation for algorithm validation |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
74 |
Issue |
9 |
Pages |
3121-3135 |
|
|
Keywords |
Ground-truth optical flow; Synthetic sequence; Algorithm validation |
|
|
Abstract |
Research in computer vision is advancing by the availability of good datasets that help to improve algorithms, validate results and obtain comparative analysis. The datasets can be real or synthetic. For some of the computer vision problems such as optical flow it is not possible to obtain ground-truth optical flow with high accuracy in natural outdoor real scenarios directly by any sensor, although it is possible to obtain ground-truth data of real scenarios in a laboratory setup with limited motion. In this difficult situation computer graphics offers a viable option for creating realistic virtual scenarios. In the current work we present a framework to design virtual scenes and generate sequences as well as ground-truth flow fields. Particularly, we generate a dataset containing sequences of driving scenarios. The sequences in the dataset vary in different speeds of the on-board vision system, different road textures, complex motion of vehicle and independent moving vehicles in the scene. This dataset enables analyzing and adaptation of existing optical flow methods, and leads to invention of new approaches particularly for driver assistance systems. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1380-7501 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.055; 601.215; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ OnS2014b |
Serial |
2472 |
|
Permanent link to this record |
|
|
|
|
Author |
Monica Piñol; Angel Sappa; Ricardo Toledo |
|
|
Title |
Adaptive Feature Descriptor Selection based on a Multi-Table Reinforcement Learning Strategy |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Neurocomputing |
Abbreviated Journal |
NEUCOM |
|
|
Volume |
150 |
Issue |
A |
Pages |
106–115 |
|
|
Keywords |
Reinforcement learning; Q-learning; Bag of features; Descriptors |
|
|
Abstract |
This paper presents and evaluates a framework to improve the performance of visual object classification methods, which are based on the usage of image feature descriptors as inputs. The goal of the proposed framework is to learn the best descriptor for each image in a given database. This goal is reached by means of a reinforcement learning process using the minimum information. The visual classification system used to demonstrate the proposed framework is based on a bag of features scheme, and the reinforcement learning technique is implemented through the Q-learning approach. The behavior of the reinforcement learning with different state definitions is evaluated. Additionally, a method that combines all these states is formulated in order to select the optimal state. Finally, the chosen actions are obtained from the best set of image descriptors in the literature: PHOW, SIFT, C-SIFT, SURF and Spin. Experimental results using two public databases (ETH and COIL) are provided showing both the validity of the proposed approach and comparisons with state of the art. In all the cases the best results are obtained with the proposed approach. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.055; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ PST2015 |
Serial |
2473 |
|
Permanent link to this record |
|
|
|
|
Author |
P. Ricaurte ; C. Chilan; Cristhian A. Aguilera-Carrasco; Boris X. Vintimilla; Angel Sappa |
|
|
Title |
Feature Point Descriptors: Infrared and Visible Spectra |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
14 |
Issue |
2 |
Pages |
3690-3701 |
|
|
Keywords |
|
|
|
Abstract |
This manuscript evaluates the behavior of classical feature point descriptors when they are used in images from long-wave infrared spectral band and compare them with the results obtained in the visible spectrum. Robustness to changes in rotation, scaling, blur, and additive noise are analyzed using a state of the art framework. Experimental results using a cross-spectral outdoor image data set are presented and conclusions from these experiments are given. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;600.055; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RCA2014a |
Serial |
2474 |
|
Permanent link to this record |
|
|
|
|
Author |
Joan Marc Llargues Asensio; Juan Peralta; Raul Arrabales; Manuel Gonzalez Bedia; Paulo Cortez; Antonio Lopez |
|
|
Title |
Artificial Intelligence Approaches for the Generation and Assessment of Believable Human-Like Behaviour in Virtual Characters |
Type |
Journal Article |
|
Year |
2014 |
Publication |
Expert Systems With Applications |
Abbreviated Journal |
EXSY |
|
|
Volume |
41 |
Issue |
16 |
Pages |
7281–7290 |
|
|
Keywords |
Turing test; Human-like behaviour; Believability; Non-player characters; Cognitive architectures; Genetic algorithm; Artificial neural networks |
|
|
Abstract |
Having artificial agents to autonomously produce human-like behaviour is one of the most ambitious original goals of Artificial Intelligence (AI) and remains an open problem nowadays. The imitation game originally proposed by Turing constitute a very effective method to prove the indistinguishability of an artificial agent. The behaviour of an agent is said to be indistinguishable from that of a human when observers (the so-called judges in the Turing test) cannot tell apart humans and non-human agents. Different environments, testing protocols, scopes and problem domains can be established to develop limited versions or variants of the original Turing test. In this paper we use a specific version of the Turing test, based on the international BotPrize competition, built in a First-Person Shooter video game, where both human players and non-player characters interact in complex virtual environments. Based on our past experience both in the BotPrize competition and other robotics and computer game AI applications we have developed three new more advanced controllers for believable agents: two based on a combination of the CERA–CRANIUM and SOAR cognitive architectures and other based on ADANN, a system for the automatic evolution and adaptation of artificial neural networks. These two new agents have been put to the test jointly with CCBot3, the winner of BotPrize 2010 competition (Arrabales et al., 2012), and have showed a significant improvement in the humanness ratio. Additionally, we have confronted all these bots to both First-person believability assessment (BotPrize original judging protocol) and Third-person believability assessment, demonstrating that the active involvement of the judge has a great impact in the recognition of human-like behaviour. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.055; 600.057; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LPA2014 |
Serial |
2500 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Manuel Alvarez; Antonio Lopez; Theo Gevers; Felipe Lumbreras |
|
|
Title |
Combining Priors, Appearance and Context for Road Detection |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
15 |
Issue |
3 |
Pages |
1168-1178 |
|
|
Keywords |
Illuminant invariance; lane markings; road detection; road prior; road scene understanding; vanishing point; 3-D scene layout |
|
|
Abstract |
Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning.
Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1524-9050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076;ISE |
Approved |
no |
|
|
Call Number |
Admin @ si @ ALG2014 |
Serial |
2501 |
|
Permanent link to this record |
|
|
|
|
Author |
Fahad Shahbaz Khan; Joost Van de Weijer; Muhammad Anwer Rao; Michael Felsberg; Carlo Gatta |
|
|
Title |
Semantic Pyramids for Gender and Action Recognition |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Image Processing |
Abbreviated Journal |
TIP |
|
|
Volume |
23 |
Issue |
8 |
Pages |
3633-3645 |
|
|
Keywords |
|
|
|
Abstract |
Person description is a challenging problem in computer vision. We investigated two major aspects of person description: 1) gender and 2) action recognition in still images. Most state-of-the-art approaches for gender and action recognition rely on the description of a single body part, such as face or full-body. However, relying on a single body part is suboptimal due to significant variations in scale, viewpoint, and pose in real-world images. This paper proposes a semantic pyramid approach for pose normalization. Our approach is fully automatic and based on combining information from full-body, upper-body, and face regions for gender and action recognition in still images. The proposed approach does not require any annotations for upper-body and face of a person. Instead, we rely on pretrained state-of-the-art upper-body and face detectors to automatically extract semantic information of a person. Given multiple bounding boxes from each body part detector, we then propose a simple method to select the best candidate bounding box, which is used for feature extraction. Finally, the extracted features from the full-body, upper-body, and face regions are combined into a single representation for classification. To validate the proposed approach for gender recognition, experiments are performed on three large data sets namely: 1) human attribute; 2) head-shoulder; and 3) proxemics. For action recognition, we perform experiments on four data sets most used for benchmarking action recognition in still images: 1) Sports; 2) Willow; 3) PASCAL VOC 2010; and 4) Stanford-40. Our experiments clearly demonstrate that the proposed approach, despite its simplicity, outperforms state-of-the-art methods for gender and action recognition. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1057-7149 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
CIC; LAMP; 601.160; 600.074; 600.079;MILAB;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ KWR2014 |
Serial |
2507 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Oliveira; Victor Santos; Angel Sappa |
|
|
Title |
Multimodal Inverse Perspective Mapping |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Information Fusion |
Abbreviated Journal |
IF |
|
|
Volume |
24 |
Issue |
|
Pages |
108–121 |
|
|
Keywords |
Inverse perspective mapping; Multimodal sensor fusion; Intelligent vehicles |
|
|
Abstract |
Over the past years, inverse perspective mapping has been successfully applied to several problems in the field of Intelligent Transportation Systems. In brief, the method consists of mapping images to a new coordinate system where perspective effects are removed. The removal of perspective associated effects facilitates road and obstacle detection and also assists in free space estimation. There is, however, a significant limitation in the inverse perspective mapping: the presence of obstacles on the road disrupts the effectiveness of the mapping. The current paper proposes a robust solution based on the use of multimodal sensor fusion. Data from a laser range finder is fused with images from the cameras, so that the mapping is not computed in the regions where obstacles are present. As shown in the results, this considerably improves the effectiveness of the algorithm and reduces computation time when compared with the classical inverse perspective mapping. Furthermore, the proposed approach is also able to cope with several cameras with different lenses or image resolutions, as well as dynamic viewpoints. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.055; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ OSS2015c |
Serial |
2532 |
|
Permanent link to this record |