toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Enric Marti; J.Roncaries; Debora Gil; Aura Hernandez-Sabate; Antoni Gurgui; Ferran Poveda edit  doi
openurl 
  Title PBL On Line: A proposal for the organization, part-time monitoring and assessment of PBL group activities Type Journal
  Year 2015 Publication Journal of Technology and Science Education Abbreviated Journal JOTSE  
  Volume 5 Issue (up) 2 Pages 87-96  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ADAS; 600.076; 600.075 Approved no  
  Call Number Admin @ si @ MRG2015 Serial 2608  
Permanent link to this record
 

 
Author Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez edit   pdf
doi  openurl
  Title Hierarchical Adaptive Structural SVM for Domain Adaptation Type Journal Article
  Year 2016 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 119 Issue (up) 2 Pages 159-178  
  Keywords Domain Adaptation; Pedestrian Detection  
  Abstract A key topic in classification is the accuracy loss produced when the data distribution in the training (source) domain differs from that in the testing (target) domain. This is being recognized as a very relevant problem for many
computer vision tasks such as image classification, object detection, and object category recognition. In this paper, we present a novel domain adaptation method that leverages multiple target domains (or sub-domains) in a hierarchical adaptation tree. The core idea is to exploit the commonalities and differences of the jointly considered target domains.
Given the relevance of structural SVM (SSVM) classifiers, we apply our idea to the adaptive SSVM (A-SSVM), which only requires the target domain samples together with the existing source-domain classifier for performing the desired adaptation. Altogether, we term our proposal as hierarchical A-SSVM (HA-SSVM).
As proof of concept we use HA-SSVM for pedestrian detection, object category recognition and face recognition. In the former we apply HA-SSVM to the deformable partbased model (DPM) while in the rest HA-SSVM is applied to multi-category classifiers. We will show how HA-SSVM is effective in increasing the detection/recognition accuracy with respect to adaptation strategies that ignore the structure of the target data. Since, the sub-domains of the target data are not always known a priori, we shown how HA-SSVM can incorporate sub-domain discovery for object category recognition.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.085; 600.082; 600.076 Approved no  
  Call Number Admin @ si @ XRV2016 Serial 2669  
Permanent link to this record
 

 
Author J. Pladellorens; M.J. Yzuel; J. Castell; Joan Serrat edit  openurl
  Title Calculo automatico del volumen del ventriculo izquierdo. Comparacion con expertos. Type Journal
  Year 1993 Publication Optica Pura y Aplicada. Abbreviated Journal  
  Volume 26 Issue (up) 3 Pages 685–691  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ PYC1993 Serial 149  
Permanent link to this record
 

 
Author Antonio Lopez; Ernest Valveny; Juan J. Villanueva edit  url
openurl 
  Title Real-time quality control of surgical material packaging by artificial vision Type Journal Article
  Year 2005 Publication Assembly Automation Abbreviated Journal  
  Volume 25 Issue (up) 3 Pages  
  Keywords  
  Abstract IF: 0.061)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;DAG Approved no  
  Call Number ADAS @ adas @ LVV2005 Serial 552  
Permanent link to this record
 

 
Author Jaume Amores; N. Sebe; Petia Radeva edit  doi
openurl 
  Title Boosting the distance estimation: Application to the K-Nearest Neighbor Classifier Type Journal Article
  Year 2006 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 27 Issue (up) 3 Pages 201–209  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS;MILAB Approved no  
  Call Number ADAS @ adas @ ASR2006 Serial 643  
Permanent link to this record
 

 
Author Angel Sappa; Fadi Dornaika; Daniel Ponsa; David Geronimo; Antonio Lopez edit   pdf
url  openurl
  Title An Efficient Approach to Onboard Stereo Vision System Pose Estimation Type Journal Article
  Year 2008 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 9 Issue (up) 3 Pages 476–490  
  Keywords Camera extrinsic parameter estimation, ground plane estimation, onboard stereo vision system  
  Abstract This paper presents an efficient technique for estimating the pose of an onboard stereo vision system relative to the environment’s dominant surface area, which is supposed to be the road surface. Unlike previous approaches, it can be used either for urban or highway scenarios since it is not based on a specific visual traffic feature extraction but on 3-D raw data points. The whole process is performed in the Euclidean space and consists of two stages. Initially, a compact 2-D representation of the original 3-D data points is computed. Then, a RANdom SAmple Consensus (RANSAC) based least-squares approach is used to fit a plane to the road. Fast RANSAC fitting is obtained by selecting points according to a probability function that takes into account the density of points at a given depth. Finally, stereo camera height and pitch angle are computed related to the fitted road plane. The proposed technique is intended to be used in driverassistance systems for applications such as vehicle or pedestrian detection. Experimental results on urban environments, which are the most challenging scenarios (i.e., flat/uphill/downhill driving, speed bumps, and car’s accelerations), are presented. These results are validated with manually annotated ground truth. Additionally, comparisons with previous works are presented to show the improvements in the central processing unit processing time, as well as in the accuracy of the obtained results.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ SDP2008 Serial 1000  
Permanent link to this record
 

 
Author Carme Julia; Angel Sappa; Felipe Lumbreras; Joan Serrat; Antonio Lopez edit   pdf
url  openurl
  Title An iterative multiresolution scheme for SFM with missing data Type Journal Article
  Year 2009 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 34 Issue (up) 3 Pages 240–258  
  Keywords  
  Abstract Several techniques have been proposed for tackling the Structure from Motion problem through factorization in the case of missing data. However, when the percentage of unknown data is high, most of them may not perform as well as expected. Focussing on this problem, an iterative multiresolution scheme, which aims at recovering missing entries in the originally given input matrix, is proposed. Information recovered following a coarse-to-fine strategy is used for filling in the missing entries. The objective is to recover, as much as possible, missing data in the given matrix.
Thus, when a factorization technique is applied to the partially or totally filled in matrix, instead of to the originally given input one, better results will be obtained. An evaluation study about the robustness to missing and noisy data is reported.
Experimental results obtained with synthetic and real video sequences are presented to show the viability of the proposed approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ JSL2009a Serial 1163  
Permanent link to this record
 

 
Author Antonio Lopez; Joan Serrat; Cristina Cañero; Felipe Lumbreras; T. Graf edit   pdf
doi  openurl
  Title Robust lane markings detection and road geometry computation Type Journal Article
  Year 2010 Publication International Journal of Automotive Technology Abbreviated Journal IJAT  
  Volume 11 Issue (up) 3 Pages 395–407  
  Keywords lane markings  
  Abstract Detection of lane markings based on a camera sensor can be a low-cost solution to lane departure and curve-over-speed warnings. A number of methods and implementations have been reported in the literature. However, reliable detection is still an issue because of cast shadows, worn and occluded markings, variable ambient lighting conditions, for example. We focus on increasing detection reliability in two ways. First, we employed an image feature other than the commonly used edges: ridges, which we claim addresses this problem better. Second, we adapted RANSAC, a generic robust estimation method, to fit a parametric model of a pair of lane lines to the image features, based on both ridgeness and ridge orientation. In addition, the model was fitted for the left and right lane lines simultaneously to enforce a consistent result. Four measures of interest for driver assistance applications were directly computed from the fitted parametric model at each frame: lane width, lane curvature, and vehicle yaw angle and lateral offset with regard the lane medial axis. We qualitatively assessed our method in video sequences captured on several road types and under very different lighting conditions. We also quantitatively assessed it on synthetic but realistic video sequences for which road geometry and vehicle trajectory ground truth are known.  
  Address  
  Corporate Author Thesis  
  Publisher The Korean Society of Automotive Engineers Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1229-9138 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ LSC2010 Serial 1300  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Ahmed Sheraz; Marcus Liwicki; Ernest Valveny; Gemma Sanchez edit   pdf
doi  openurl
  Title Statistical Segmentation and Structural Recognition for Floor Plan Interpretation Type Journal Article
  Year 2014 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 17 Issue (up) 3 Pages 221-237  
  Keywords  
  Abstract A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077 Approved no  
  Call Number HSL2014 Serial 2370  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost van de Weijer; Andrew Bagdanov; Antonio Lopez; Michael Felsberg edit   pdf
doi  openurl
  Title Coloring Action Recognition in Still Images Type Journal Article
  Year 2013 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 105 Issue (up) 3 Pages 205-221  
  Keywords  
  Abstract In this article we investigate the problem of human action recognition in static images. By action recognition we intend a class of problems which includes both action classification and action detection (i.e. simultaneous localization and classification). Bag-of-words image representations yield promising results for action classification, and deformable part models perform very well object detection. The representations for action recognition typically use only shape cues and ignore color information. Inspired by the recent success of color in image classification and object detection, we investigate the potential of color for action classification and detection in static images. We perform a comprehensive evaluation of color descriptors and fusion approaches for action recognition. Experiments were conducted on the three datasets most used for benchmarking action recognition in still images: Willow, PASCAL VOC 2010 and Stanford-40. Our experiments demonstrate that incorporating color information considerably improves recognition performance, and that a descriptor based on color names outperforms pure color descriptors. Our experiments demonstrate that late fusion of color and shape information outperforms other approaches on action recognition. Finally, we show that the different color–shape fusion approaches result in complementary information and combining them yields state-of-the-art performance for action classification.  
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes CIC; ADAS; 600.057; 600.048 Approved no  
  Call Number Admin @ si @ KRW2013 Serial 2285  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: