|
Records |
Links |
|
Author |
Jaume Amores; N. Sebe; Petia Radeva |
|
|
Title |
Context-Based Object-Class Recognition and Retrieval by Generalized Correlograms |
Type |
Journal |
|
Year |
2007 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29(10):1818–1833, (ISI 3,81) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;MILAB |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ ASR2007b |
Serial |
922 |
|
Permanent link to this record |
|
|
|
|
Author |
Yu Jie; Jaume Amores; N. Sebe; Petia Radeva; Tian Qi |
|
|
Title |
Distance Learning for Similarity Estimation |
Type |
Journal |
|
Year |
2008 |
Publication |
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.30(3):451–462 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;MILAB |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ JAS2008 |
Serial |
961 |
|
Permanent link to this record |
|
|
|
|
Author |
Joan Serrat; Ferran Diego; Felipe Lumbreras |
|
|
Title |
Los faros delanteros a traves del objetivo |
Type |
Journal |
|
Year |
2008 |
Publication |
UAB Divulga, Revista de divulgacion cientifica |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ SDL2008b |
Serial |
1471 |
|
Permanent link to this record |
|
|
|
|
Author |
Carme Julia; Angel Sappa; Felipe Lumbreras |
|
|
Title |
Aprendiendo a recrear la realidad en 3D |
Type |
Journal |
|
Year |
2008 |
Publication |
UAB Divulga, Revista de divulgacion cientifica |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
spreading;ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ JSL2008b |
Serial |
1472 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Vera; Debora Gil; Antonio Lopez; Miguel Angel Gonzalez Ballester |
|
|
Title |
Multilocal Creaseness Measure |
Type |
Journal |
|
Year |
2012 |
Publication |
The Insight Journal |
Abbreviated Journal |
IJ |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Ridges, Valley, Creaseness, Structure Tensor, Skeleton, |
|
|
Abstract |
This document describes the implementation using the Insight Toolkit of an algorithm for detecting creases (ridges and valleys) in N-dimensional images, based on the Local Structure Tensor of the image. In addition to the filter used to calculate the creaseness image, a filter for the computation of the structure tensor is also included in this submission. |
|
|
Address |
|
|
|
Corporate Author |
Alma IT Systems |
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
english |
Summary Language |
english |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;ADAS; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VGL2012 |
Serial |
1840 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Oliveira; Victor Santos; Angel Sappa |
|
|
Title |
Multimodal Inverse Perspective Mapping |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Information Fusion |
Abbreviated Journal |
IF |
|
|
Volume |
24 |
Issue |
|
Pages |
108–121 |
|
|
Keywords |
Inverse perspective mapping; Multimodal sensor fusion; Intelligent vehicles |
|
|
Abstract |
Over the past years, inverse perspective mapping has been successfully applied to several problems in the field of Intelligent Transportation Systems. In brief, the method consists of mapping images to a new coordinate system where perspective effects are removed. The removal of perspective associated effects facilitates road and obstacle detection and also assists in free space estimation. There is, however, a significant limitation in the inverse perspective mapping: the presence of obstacles on the road disrupts the effectiveness of the mapping. The current paper proposes a robust solution based on the use of multimodal sensor fusion. Data from a laser range finder is fused with images from the cameras, so that the mapping is not computed in the regions where obstacles are present. As shown in the results, this considerably improves the effectiveness of the algorithm and reduces computation time when compared with the classical inverse perspective mapping. Furthermore, the proposed approach is also able to cope with several cameras with different lenses or image resolutions, as well as dynamic viewpoints. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.055; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ OSS2015c |
Serial |
2532 |
|
Permanent link to this record |
|
|
|
|
Author |
Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Michael Felsberg; J.Laaksonen |
|
|
Title |
Compact color texture description for texture classification |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
51 |
Issue |
|
Pages |
16-22 |
|
|
Keywords |
|
|
|
Abstract |
Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature.
However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This
gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive
evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7:8%, 4:3% and 5:0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
LAMP; 600.068; 600.079;ADAS;CIC |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRW2015a |
Serial |
2587 |
|
Permanent link to this record |
|
|
|
|
Author |
Meysam Madadi; Sergio Escalera; Jordi Gonzalez; Xavier Roca; Felipe Lumbreras |
|
|
Title |
Multi-part body segmentation based on depth maps for soft biometry analysis |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
56 |
Issue |
|
Pages |
14-21 |
|
|
Keywords |
3D shape context; 3D point cloud alignment; Depth maps; Human body segmentation; Soft biometry analysis |
|
|
Abstract |
This paper presents a novel method extracting biometric measures using depth sensors. Given a multi-part labeled training data, a new subject is aligned to the best model of the dataset, and soft biometrics such as lengths or circumference sizes of limbs and body are computed. The process is performed by training relevant pose clusters, defining a representative model, and fitting a 3D shape context descriptor within an iterative matching procedure. We show robust measures by applying orthogonal plates to body hull. We test our approach in a novel full-body RGB-Depth data set, showing accurate estimation of soft biometrics and better segmentation accuracy in comparison with random forest approach without requiring large training data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; ISE; ADAS; 600.076;600.049; 600.063; 600.054; 302.018;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ MEG2015 |
Serial |
2588 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Aura Hernandez-Sabate; Antonio Lopez |
|
|
Title |
A reduced feature set for driver head pose estimation |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Applied Soft Computing |
Abbreviated Journal |
ASOC |
|
|
Volume |
45 |
Issue |
|
Pages |
98-107 |
|
|
Keywords |
Head pose estimation; driving performance evaluation; subspace based methods; linear regression |
|
|
Abstract |
Evaluation of driving performance is of utmost importance in order to reduce road accident rate. Since driving ability includes visual-spatial and operational attention, among others, head pose estimation of the driver is a crucial indicator of driving performance. This paper proposes a new automatic method for coarse and fine head's yaw angle estimation of the driver. We rely on a set of geometric features computed from just three representative facial keypoints, namely the center of the eyes and the nose tip. With these geometric features, our method combines two manifold embedding methods and a linear regression one. In addition, the method has a confidence mechanism to decide if the classification of a sample is not reliable. The approach has been tested using the CMU-PIE dataset and our own driver dataset. Despite the very few facial keypoints required, the results are comparable to the state-of-the-art techniques. The low computational cost of the method and its robustness makes feasible to integrate it in massive consume devices as a real time application. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.085; 600.076;;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DHL2016 |
Serial |
2760 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Oliveira; Victor Santos; Angel Sappa; P. Dias; A. Moreira |
|
|
Title |
Incremental Scenario Representations for Autonomous Driving using Geometric Polygonal Primitives |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Robotics and Autonomous Systems |
Abbreviated Journal |
RAS |
|
|
Volume |
83 |
Issue |
|
Pages |
312-325 |
|
|
Keywords |
Incremental scene reconstruction; Point clouds; Autonomous vehicles; Polygonal primitives |
|
|
Abstract |
When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier B.V. |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.086, 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @OSS2016a |
Serial |
2806 |
|
Permanent link to this record |