|
Records |
Links |
|
Author |
Angel Sappa; M.A. Garcia |

|
|
Title |
Incremental Integration of Multiresolution Range Images |
Type |
Journal |
|
Year |
2007 |
Publication |
The imaging science journal. Vol. 55, No. 3 pp. 127–139 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages  |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ SaG2007d |
Serial |
812 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Amores; N. Sebe; Petia Radeva |

|
|
Title |
Context-Based Object-Class Recognition and Retrieval by Generalized Correlograms |
Type |
Journal |
|
Year |
2007 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29(10):1818–1833, (ISI 3,81) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages  |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;MILAB |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ ASR2007b |
Serial |
922 |
|
Permanent link to this record |
|
|
|
|
Author |
Yu Jie; Jaume Amores; N. Sebe; Petia Radeva; Tian Qi |

|
|
Title |
Distance Learning for Similarity Estimation |
Type |
Journal |
|
Year |
2008 |
Publication |
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.30(3):451–462 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages  |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;MILAB |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ JAS2008 |
Serial |
961 |
|
Permanent link to this record |
|
|
|
|
Author |
Joan Serrat; Ferran Diego; Felipe Lumbreras |

|
|
Title |
Los faros delanteros a traves del objetivo |
Type |
Journal |
|
Year |
2008 |
Publication |
UAB Divulga, Revista de divulgacion cientifica |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages  |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ SDL2008b |
Serial |
1471 |
|
Permanent link to this record |
|
|
|
|
Author |
Carme Julia; Angel Sappa; Felipe Lumbreras |

|
|
Title |
Aprendiendo a recrear la realidad en 3D |
Type |
Journal |
|
Year |
2008 |
Publication |
UAB Divulga, Revista de divulgacion cientifica |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages  |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
spreading;ADAS |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ JSL2008b |
Serial |
1472 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Vera; Debora Gil; Antonio Lopez; Miguel Angel Gonzalez Ballester |


|
|
Title |
Multilocal Creaseness Measure |
Type |
Journal |
|
Year |
2012 |
Publication |
The Insight Journal |
Abbreviated Journal |
IJ |
|
|
Volume |
|
Issue |
|
Pages  |
|
|
|
Keywords |
Ridges, Valley, Creaseness, Structure Tensor, Skeleton, |
|
|
Abstract |
This document describes the implementation using the Insight Toolkit of an algorithm for detecting creases (ridges and valleys) in N-dimensional images, based on the Local Structure Tensor of the image. In addition to the filter used to calculate the creaseness image, a filter for the computation of the structure tensor is also included in this submission. |
|
|
Address |
|
|
|
Corporate Author |
Alma IT Systems |
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
english |
Summary Language |
english |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;ADAS; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VGL2012 |
Serial |
1840 |
|
Permanent link to this record |
|
|
|
|
Author |
Henry Velesaca; Gisel Bastidas-Guacho; Mohammad Rouhani; Angel Sappa |

|
|
Title |
Multimodal image registration techniques: a comprehensive survey |
Type |
Journal Article |
|
Year |
2024 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
|
Issue |
|
Pages  |
|
|
|
Keywords |
|
|
|
Abstract |
This manuscript presents a review of state-of-the-art techniques proposed in the literature for multimodal image registration, addressing instances where images from different modalities need to be precisely aligned in the same reference system. This scenario arises when the images to be registered come from different modalities, among the visible and thermal spectral bands, 3D-RGB, or flash-no flash, or NIR-visible. The review spans different techniques from classical approaches to more modern ones based on deep learning, aiming to highlight the particularities required at each step in the registration pipeline when dealing with multimodal images. It is noteworthy that medical images are excluded from this review due to their specific characteristics, including the use of both active and passive sensors or the non-rigid nature of the body contained in the image. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MSIAU;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ VBR2024 |
Serial |
3997 |
|
Permanent link to this record |
|
|
|
|
Author |
Angel Sappa; P. Carvajal; Cristhian A. Aguilera-Carrasco; Miguel Oliveira; Dennis Romero; Boris X. Vintimilla |


|
|
Title |
Wavelet based visible and infrared image fusion: a comparative study |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Sensors |
Abbreviated Journal |
SENS |
|
|
Volume |
16 |
Issue |
6 |
Pages  |
1-15 |
|
|
Keywords |
Image fusion; fusion evaluation metrics; visible and infrared imaging; discrete wavelet transform |
|
|
Abstract |
This paper evaluates different wavelet-based cross-spectral image fusion strategies adopted to merge visible and infrared images. The objective is to find the best setup independently of the evaluation metric used to measure the performance. Quantitative performance results are obtained with state of the art approaches together with adaptations proposed in the current work. The options evaluated in the current work result from the combination of different setups in the wavelet image decomposition stage together with different fusion strategies for the final merging stage that generates the resulting representation. Most of the approaches evaluate results according to the application for which they are intended for. Sometimes a human observer is selected to judge the quality of the obtained results. In the current work, quantitative values are considered in order to find correlations between setups and performance of obtained results; these correlations can be used to define a criteria for selecting the best fusion strategy for a given pair of cross-spectral images. The whole procedure is evaluated with a large set of correctly registered visible and infrared image pairs, including both Near InfraRed (NIR) and Long Wave InfraRed (LWIR). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.086; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @SCA2016 |
Serial |
2807 |
|
Permanent link to this record |
|
|
|
|
Author |
Yi Xiao; Felipe Codevilla; Akhil Gurram; Onay Urfalioglu; Antonio Lopez |


|
|
Title |
Multimodal end-to-end autonomous driving |
Type |
Journal Article |
|
Year |
2020 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
|
Issue |
|
Pages  |
1-11 |
|
|
Keywords |
|
|
|
Abstract |
A crucial component of an autonomous vehicle (AV) is the artificial intelligence (AI) is able to drive towards a desired destination. Today, there are different paradigms addressing the development of AI drivers. On the one hand, we find modular pipelines, which divide the driving task into sub-tasks such as perception and maneuver planning and control. On the other hand, we find end-to-end driving approaches that try to learn a direct mapping from input raw sensor data to vehicle control signals. The later are relatively less studied, but are gaining popularity since they are less demanding in terms of sensor data annotation. This paper focuses on end-to-end autonomous driving. So far, most proposals relying on this paradigm assume RGB images as input sensor data. However, AVs will not be equipped only with cameras, but also with active sensors providing accurate depth information (e.g., LiDARs). Accordingly, this paper analyses whether combining RGB and depth modalities, i.e. using RGBD data, produces better end-to-end AI drivers than relying on a single modality. We consider multimodality based on early, mid and late fusion schemes, both in multisensory and single-sensor (monocular depth estimation) settings. Using the CARLA simulator and conditional imitation learning (CIL), we show how, indeed, early fusion multimodality outperforms single-modality. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ XCG2020 |
Serial |
3490 |
|
Permanent link to this record |
|
|
|
|
Author |
Meysam Madadi; Sergio Escalera; Jordi Gonzalez; Xavier Roca; Felipe Lumbreras |

|
|
Title |
Multi-part body segmentation based on depth maps for soft biometry analysis |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
56 |
Issue |
|
Pages  |
14-21 |
|
|
Keywords |
3D shape context; 3D point cloud alignment; Depth maps; Human body segmentation; Soft biometry analysis |
|
|
Abstract |
This paper presents a novel method extracting biometric measures using depth sensors. Given a multi-part labeled training data, a new subject is aligned to the best model of the dataset, and soft biometrics such as lengths or circumference sizes of limbs and body are computed. The process is performed by training relevant pose clusters, defining a representative model, and fitting a 3D shape context descriptor within an iterative matching procedure. We show robust measures by applying orthogonal plates to body hull. We test our approach in a novel full-body RGB-Depth data set, showing accurate estimation of soft biometrics and better segmentation accuracy in comparison with random forest approach without requiring large training data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; ISE; ADAS; 600.076;600.049; 600.063; 600.054; 302.018;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ MEG2015 |
Serial |
2588 |
|
Permanent link to this record |