|
Records |
Links |
|
Author |
Yi Xiao; Felipe Codevilla; Akhil Gurram; Onay Urfalioglu; Antonio Lopez |


|
|
Title |
Multimodal end-to-end autonomous driving |
Type |
Journal Article |
|
Year |
2020 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
|
Issue |
|
Pages  |
1-11 |
|
|
Keywords |
|
|
|
Abstract |
A crucial component of an autonomous vehicle (AV) is the artificial intelligence (AI) is able to drive towards a desired destination. Today, there are different paradigms addressing the development of AI drivers. On the one hand, we find modular pipelines, which divide the driving task into sub-tasks such as perception and maneuver planning and control. On the other hand, we find end-to-end driving approaches that try to learn a direct mapping from input raw sensor data to vehicle control signals. The later are relatively less studied, but are gaining popularity since they are less demanding in terms of sensor data annotation. This paper focuses on end-to-end autonomous driving. So far, most proposals relying on this paradigm assume RGB images as input sensor data. However, AVs will not be equipped only with cameras, but also with active sensors providing accurate depth information (e.g., LiDARs). Accordingly, this paper analyses whether combining RGB and depth modalities, i.e. using RGBD data, produces better end-to-end AI drivers than relying on a single modality. We consider multimodality based on early, mid and late fusion schemes, both in multisensory and single-sensor (monocular depth estimation) settings. Using the CARLA simulator and conditional imitation learning (CIL), we show how, indeed, early fusion multimodality outperforms single-modality. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ XCG2020 |
Serial |
3490 |
|
Permanent link to this record |
|
|
|
|
Author |
Meysam Madadi; Sergio Escalera; Jordi Gonzalez; Xavier Roca; Felipe Lumbreras |

|
|
Title |
Multi-part body segmentation based on depth maps for soft biometry analysis |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
56 |
Issue |
|
Pages  |
14-21 |
|
|
Keywords |
3D shape context; 3D point cloud alignment; Depth maps; Human body segmentation; Soft biometry analysis |
|
|
Abstract |
This paper presents a novel method extracting biometric measures using depth sensors. Given a multi-part labeled training data, a new subject is aligned to the best model of the dataset, and soft biometrics such as lengths or circumference sizes of limbs and body are computed. The process is performed by training relevant pose clusters, defining a representative model, and fitting a 3D shape context descriptor within an iterative matching procedure. We show robust measures by applying orthogonal plates to body hull. We test our approach in a novel full-body RGB-Depth data set, showing accurate estimation of soft biometrics and better segmentation accuracy in comparison with random forest approach without requiring large training data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; ISE; ADAS; 600.076;600.049; 600.063; 600.054; 302.018;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ MEG2015 |
Serial |
2588 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Oriol Ramos Terrades; Sergi Robles; Gemma Sanchez |

|
|
Title |
CVC-FP and SGT: a new database for structural floor plan analysis and its groundtruthing tool |
Type |
Journal Article |
|
Year |
2015 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
18 |
Issue |
1 |
Pages  |
15-30 |
|
|
Keywords |
|
|
|
Abstract |
Recent results on structured learning methods have shown the impact of structural information in a wide range of pattern recognition tasks. In the field of document image analysis, there is a long experience on structural methods for the analysis and information extraction of multiple types of documents. Yet, the lack of conveniently annotated and free access databases has not benefited the progress in some areas such as technical drawing understanding. In this paper, we present a floor plan database, named CVC-FP, that is annotated for the architectural objects and their structural relations. To construct this database, we have implemented a groundtruthing tool, the SGT tool, that allows to make specific this sort of information in a natural manner. This tool has been made for general purpose groundtruthing: It allows to define own object classes and properties, multiple labeling options are possible, grants the cooperative work, and provides user and version control. We finally have collected some of the recent work on floor plan interpretation and present a quantitative benchmark for this database. Both CVC-FP database and the SGT tool are freely released to the research community to ease comparisons between methods and boost reproducible research. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.061; 600.076; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HRR2015 |
Serial |
2567 |
|
Permanent link to this record |
|
|
|
|
Author |
Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Michael Felsberg; J.Laaksonen |

|
|
Title |
Compact color texture description for texture classification |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
51 |
Issue |
|
Pages  |
16-22 |
|
|
Keywords |
|
|
|
Abstract |
Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature.
However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This
gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive
evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7:8%, 4:3% and 5:0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
LAMP; 600.068; 600.079;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRW2015a |
Serial |
2587 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohammad Rouhani; Angel Sappa; E. Boyer |

|
|
Title |
Implicit B-Spline Surface Reconstruction |
Type |
Journal Article |
|
Year |
2015 |
Publication |
IEEE Transactions on Image Processing |
Abbreviated Journal |
TIP |
|
|
Volume |
24 |
Issue |
1 |
Pages  |
22 - 32 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a fast and flexible curve, and surface reconstruction technique based on implicit B-spline. This representation does not require any parameterization and it is locally supported. This fact has been exploited in this paper to propose a reconstruction technique through solving a sparse system of equations. This method is further accelerated to reduce the dimension to the active control lattice. Moreover, the surface smoothness and user interaction are allowed for controlling the surface. Finally, a novel weighting technique has been introduced in order to blend small patches and smooth them in the overlapping regions. The whole framework is very fast and efficient and can handle large cloud of points with very low computational cost. The experimental results show the flexibility and accuracy of the proposed algorithm to describe objects with complex topologies. Comparisons with other fitting methods highlight the superiority of the proposed approach in the presence of noise and missing data. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1057-7149 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RSB2015 |
Serial |
2541 |
|
Permanent link to this record |
|
|
|
|
Author |
Oscar Argudo; Marc Comino; Antonio Chica; Carlos Andujar; Felipe Lumbreras |

|
|
Title |
Segmentation of aerial images for plausible detail synthesis |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Computers & Graphics |
Abbreviated Journal |
CG |
|
|
Volume |
71 |
Issue |
|
Pages  |
23-34 |
|
|
Keywords |
Terrain editing; Detail synthesis; Vegetation synthesis; Terrain rendering; Image segmentation |
|
|
Abstract |
The visual enrichment of digital terrain models with plausible synthetic detail requires the segmentation of aerial images into a suitable collection of categories. In this paper we present a complete pipeline for segmenting high-resolution aerial images into a user-defined set of categories distinguishing e.g. terrain, sand, snow, water, and different types of vegetation. This segmentation-for-synthesis problem implies that per-pixel categories must be established according to the algorithms chosen for rendering the synthetic detail. This precludes the definition of a universal set of labels and hinders the construction of large training sets. Since artists might choose to add new categories on the fly, the whole pipeline must be robust against unbalanced datasets, and fast on both training and inference. Under these constraints, we analyze the contribution of common per-pixel descriptors, and compare the performance of state-of-the-art supervised learning algorithms. We report the findings of two user studies. The first one was conducted to analyze human accuracy when manually labeling aerial images. The second user study compares detailed terrains built using different segmentation strategies, including official land cover maps. These studies demonstrate that our approach can be used to turn digital elevation models into fully-featured, detailed terrains with minimal authoring efforts. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0097-8493 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.086; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ ACC2018 |
Serial |
3147 |
|
Permanent link to this record |
|
|
|
|
Author |
Angel Sappa; Cristhian A. Aguilera-Carrasco; Juan A. Carvajal Ayala; Miguel Oliveira; Dennis Romero; Boris Vintimilla; Ricardo Toledo |


|
|
Title |
Monocular visual odometry: A cross-spectral image fusion based approach |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Robotics and Autonomous Systems |
Abbreviated Journal |
RAS |
|
|
Volume |
85 |
Issue |
|
Pages  |
26-36 |
|
|
Keywords |
Monocular visual odometry; LWIR-RGB cross-spectral imaging; Image fusion |
|
|
Abstract |
This manuscript evaluates the usage of fused cross-spectral images in a monocular visual odometry approach. Fused images are obtained through a Discrete Wavelet Transform (DWT) scheme, where the best setup is empirically obtained by means of a mutual information based evaluation metric. The objective is to have a flexible scheme where fusion parameters are adapted according to the characteristics of the given images. Visual odometry is computed from the fused monocular images using an off the shelf approach. Experimental results using data sets obtained with two different platforms are presented. Additionally, comparison with a previous approach as well as with monocular-visible/infrared spectra are also provided showing the advantages of the proposed scheme. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier B.V. |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;600.086; 600.076 |
Approved |
no |
|
|
Call Number |
Admin @ si @SAC2016 |
Serial |
2811 |
|
Permanent link to this record |
|
|
|
|
Author |
Joan Serrat; Felipe Lumbreras; Francisco Blanco; Manuel Valiente; Montserrat Lopez-Mesas |


|
|
Title |
myStone: A system for automatic kidney stone classification |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Expert Systems with Applications |
Abbreviated Journal |
ESA |
|
|
Volume |
89 |
Issue |
|
Pages  |
41-51 |
|
|
Keywords |
Kidney stone; Optical device; Computer vision; Image classification |
|
|
Abstract |
Kidney stone formation is a common disease and the incidence rate is constantly increasing worldwide. It has been shown that the classification of kidney stones can lead to an important reduction of the recurrence rate. The classification of kidney stones by human experts on the basis of certain visual color and texture features is one of the most employed techniques. However, the knowledge of how to analyze kidney stones is not widespread, and the experts learn only after being trained on a large number of samples of the different classes. In this paper we describe a new device specifically designed for capturing images of expelled kidney stones, and a method to learn and apply the experts knowledge with regard to their classification. We show that with off the shelf components, a carefully selected set of features and a state of the art classifier it is possible to automate this difficult task to a good degree. We report results on a collection of 454 kidney stones, achieving an overall accuracy of 63% for a set of eight classes covering almost all of the kidney stones taxonomy. Moreover, for more than 80% of samples the real class is the first or the second most probable class according to the system, being then the patient recommendations for the two top classes similar. This is the first attempt towards the automatic visual classification of kidney stones, and based on the current results we foresee better accuracies with the increase of the dataset size. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; MSIAU; 603.046; 600.122; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SLB2017 |
Serial |
3026 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Manuel Alvarez; Theo Gevers; Antonio Lopez |


|
|
Title |
Learning photometric invariance for object detection |
Type |
Journal Article |
|
Year |
2010 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
90 |
Issue |
1 |
Pages  |
45-61 |
|
|
Keywords |
road detection |
|
|
Abstract |
Impact factor: 3.508 (the last available from JCR2009SCI). Position 4/103 in the category Computer Science, Artificial Intelligence. Quartile
Color is a powerful visual cue in many computer vision applications such as image segmentation and object recognition. However, most of the existing color models depend on the imaging conditions that negatively affect the performance of the task at hand. Often, a reflection model (e.g., Lambertian or dichromatic reflectance) is used to derive color invariant models. However, this approach may be too restricted to model real-world scenes in which different reflectance mechanisms can hold simultaneously.
Therefore, in this paper, we aim to derive color invariance by learning from color models to obtain diversified color invariant ensembles. First, a photometrical orthogonal and non-redundant color model set is computed composed of both color variants and invariants. Then, the proposed method combines these color models to arrive at a diversified color ensemble yielding a proper balance between invariance (repeatability) and discriminative power (distinctiveness). To achieve this, our fusion method uses a multi-view approach to minimize the estimation error. In this way, the proposed method is robust to data uncertainty and produces properly diversified color invariant ensembles. Further, the proposed method is extended to deal with temporal data by predicting the evolution of observations over time.
Experiments are conducted on three different image datasets to validate the proposed method. Both the theoretical and experimental results show that the method is robust against severe variations in imaging conditions. The method is not restricted to a certain reflection model or parameter tuning, and outperforms state-of-the-art detection techniques in the field of object, skin and road recognition. Considering sequential data, the proposed method (extended to deal with future observations) outperforms the other methods |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0920-5691 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS;ISE |
Approved |
no |
|
|
Call Number |
ADAS @ adas @ AGL2010c |
Serial |
1451 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate |


|
|
Title |
Decremental generalized discriminative common vectors applied to images classification |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Knowledge-Based Systems |
Abbreviated Journal |
KBS |
|
|
Volume |
131 |
Issue |
|
Pages  |
46-57 |
|
|
Keywords |
Decremental learning; Generalized Discriminative Common Vectors; Feature extraction; Linear subspace methods; Classification |
|
|
Abstract |
In this paper, a novel decremental subspace-based learning method called Decremental Generalized Discriminative Common Vectors method (DGDCV) is presented. The method makes use of the concept of decremental learning, which we introduce in the field of supervised feature extraction and classification. By efficiently removing unnecessary data and/or classes for a knowledge base, our methodology is able to update the model without recalculating the full projection or accessing to the previously processed training data, while retaining the previously acquired knowledge. The proposed method has been validated in 6 standard face recognition datasets, showing a considerable computational gain without compromising the accuracy of the model. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.118; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMH2017a |
Serial |
3003 |
|
Permanent link to this record |