toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author David Geronimo; Joan Serrat; Antonio Lopez; Ramon Baldrich edit   pdf
doi  openurl
  Title Traffic sign recognition for computer vision project-based learning Type Journal Article
  Year 2013 Publication IEEE Transactions on Education Abbreviated Journal T-EDUC  
  Volume 56 Issue 3 Pages 364-371  
  Keywords traffic signs  
  Abstract This paper presents a graduate course project on computer vision. The aim of the project is to detect and recognize traffic signs in video sequences recorded by an on-board vehicle camera. This is a demanding problem, given that traffic sign recognition is one of the most challenging problems for driving assistance systems. Equally, it is motivating for the students given that it is a real-life problem. Furthermore, it gives them the opportunity to appreciate the difficulty of real-world vision problems and to assess the extent to which this problem can be solved by modern computer vision and pattern classification techniques taught in the classroom. The learning objectives of the course are introduced, as are the constraints imposed on its design, such as the diversity of students' background and the amount of time they and their instructors dedicate to the course. The paper also describes the course contents, schedule, and how the project-based learning approach is applied. The outcomes of the course are discussed, including both the students' marks and their personal feedback.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9359 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; CIC Approved no  
  Call Number (down) Admin @ si @ GSL2013; ADAS @ adas @ Serial 2160  
Permanent link to this record
 

 
Author Adrien Gaidon; Antonio Lopez; Florent Perronnin edit  url
openurl 
  Title The Reasonable Effectiveness of Synthetic Visual Data Type Journal Article
  Year 2018 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 126 Issue 9 Pages 899–901  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number (down) Admin @ si @ GLP2018 Serial 3180  
Permanent link to this record
 

 
Author Zhijie Fang; David Vazquez; Antonio Lopez edit  doi
openurl 
  Title On-Board Detection of Pedestrian Intentions Type Journal Article
  Year 2017 Publication Sensors Abbreviated Journal SENS  
  Volume 17 Issue 10 Pages 2193  
  Keywords pedestrian intention; ADAS; self-driving  
  Abstract Avoiding vehicle-to-pedestrian crashes is a critical requirement for nowadays advanced driver assistant systems (ADAS) and future self-driving vehicles. Accordingly, detecting pedestrians from raw sensor data has a history of more than 15 years of research, with vision playing a central role.
During the last years, deep learning has boosted the accuracy of image-based pedestrian detectors.
However, detection is just the first step towards answering the core question, namely is the vehicle going to crash with a pedestrian provided preventive actions are not taken? Therefore, knowing as soon as possible if a detected pedestrian has the intention of crossing the road ahead of the vehicle is
essential for performing safe and comfortable maneuvers that prevent a crash. However, compared to pedestrian detection, there is relatively little literature on detecting pedestrian intentions. This paper aims to contribute along this line by presenting a new vision-based approach which analyzes the
pose of a pedestrian along several frames to determine if he or she is going to enter the road or not. We present experiments showing 750 ms of anticipation for pedestrians crossing the road, which at a typical urban driving speed of 50 km/h can provide 15 additional meters (compared to a pure pedestrian detector) for vehicle automatic reactions or to warn the driver. Moreover, in contrast with state-of-the-art methods, our approach is monocular, neither requiring stereo nor optical flow information.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.085; 600.076; 601.223; 600.116; 600.118 Approved no  
  Call Number (down) Admin @ si @ FVL2017 Serial 2983  
Permanent link to this record
 

 
Author Zhijie Fang; Antonio Lopez edit  url
doi  openurl
  Title Intention Recognition of Pedestrians and Cyclists by 2D Pose Estimation Type Journal Article
  Year 2019 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume Issue Pages  
  Keywords  
  Abstract Anticipating the intentions of vulnerable road users (VRUs) such as pedestrians and cyclists is critical for performing safe and comfortable driving maneuvers. This is the case for human driving and, thus, should be taken into account by systems providing any level of driving assistance, from advanced driver assistant systems (ADAS) to fully autonomous vehicles (AVs). In this paper, we show how the latest advances on monocular vision-based human pose estimation, i.e. those relying on deep Convolutional Neural Networks (CNNs), enable to recognize the intentions of such VRUs. In the case of cyclists, we assume that they follow traffic rules to indicate future maneuvers with arm signals. In the case of pedestrians, no indications can be assumed. Instead, we hypothesize that the walking pattern of a pedestrian allows to determine if he/she has the intention of crossing the road in the path of the ego-vehicle, so that the ego-vehicle must maneuver accordingly (e.g. slowing down or stopping). In this paper, we show how the same methodology can be used for recognizing pedestrians and cyclists' intentions. For pedestrians, we perform experiments on the JAAD dataset. For cyclists, we did not found an analogous dataset, thus, we created our own one by acquiring and annotating videos which we share with the research community. Overall, the proposed pipeline provides new state-of-the-art results on the intention recognition of VRUs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; no proj Approved no  
  Call Number (down) Admin @ si @ FaL2019 Serial 3305  
Permanent link to this record
 

 
Author Ferran Diego; Joan Serrat; Antonio Lopez edit   pdf
doi  openurl
  Title Joint spatio-temporal alignment of sequences Type Journal Article
  Year 2013 Publication IEEE Transactions on Multimedia Abbreviated Journal TMM  
  Volume 15 Issue 6 Pages 1377-1387  
  Keywords video alignment  
  Abstract Video alignment is important in different areas of computer vision such as wide baseline matching, action recognition, change detection, video copy detection and frame dropping prevention. Current video alignment methods usually deal with a relatively simple case of fixed or rigidly attached cameras or simultaneous acquisition. Therefore, in this paper we propose a joint video alignment for bringing two video sequences into a spatio-temporal alignment. Specifically, the novelty of the paper is to formulate the video alignment to fold the spatial and temporal alignment into a single alignment framework. This simultaneously satisfies a frame-correspondence and frame-alignment similarity; exploiting the knowledge among neighbor frames by a standard pairwise Markov random field (MRF). This new formulation is able to handle the alignment of sequences recorded at different times by independent moving cameras that follows a similar trajectory, and also generalizes the particular cases that of fixed geometric transformation and/or linear temporal mapping. We conduct experiments on different scenarios such as sequences recorded simultaneously or by moving cameras to validate the robustness of the proposed approach. The proposed method provides the highest video alignment accuracy compared to the state-of-the-art methods on sequences recorded from vehicles driving along the same track at different times.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-9210 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (down) Admin @ si @ DSL2013; ADAS @ adas @ Serial 2228  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Marçal Rusiñol; Aura Hernandez-Sabate edit  doi
openurl 
  Title Feature Extraction by Using Dual-Generalized Discriminative Common Vectors Type Journal Article
  Year 2019 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 61 Issue 3 Pages 331-351  
  Keywords Online feature extraction; Generalized discriminative common vectors; Dual learning; Incremental learning; Decremental learning  
  Abstract In this paper, a dual online subspace-based learning method called dual-generalized discriminative common vectors (Dual-GDCV) is presented. The method extends incremental GDCV by exploiting simultaneously both the concepts of incremental and decremental learning for supervised feature extraction and classification. Our methodology is able to update the feature representation space without recalculating the full projection or accessing the previously processed training data. It allows both adding information and removing unnecessary data from a knowledge base in an efficient way, while retaining the previously acquired knowledge. The proposed method has been theoretically proved and empirically validated in six standard face recognition and classification datasets, under two scenarios: (1) removing and adding samples of existent classes, and (2) removing and adding new classes to a classification problem. Results show a considerable computational gain without compromising the accuracy of the model in comparison with both batch methodologies and other state-of-art adaptive methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.084 Approved no  
  Call Number (down) Admin @ si @ DRR2019 Serial 3172  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Debora Gil edit  doi
openurl 
  Title Continuous head pose estimation using manifold subspace embedding and multivariate regression Type Journal Article
  Year 2018 Publication IEEE ACCESS Abbreviated Journal ACCESS  
  Volume 6 Issue Pages 18325 - 18334  
  Keywords Head Pose estimation; HOG features; Generalized Discriminative Common Vectors; B-splines; Multiple linear regression  
  Abstract In this paper, a continuous head pose estimation system is proposed to estimate yaw and pitch head angles from raw facial images. Our approach is based on manifold learningbased methods, due to their promising generalization properties shown for face modelling from images. The method combines histograms of oriented gradients, generalized discriminative common vectors and continuous local regression to achieve successful performance. Our proposal was tested on multiple standard face datasets, as well as in a realistic scenario. Results show a considerable performance improvement and a higher consistence of our model in comparison with other state-of-art methods, with angular errors varying between 9 and 17 degrees.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-3536 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number (down) Admin @ si @ DMH2018b Serial 3091  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate; Marçal Rusiñol; Francesc J. Ferri edit   pdf
doi  openurl
  Title Fast Kernel Generalized Discriminative Common Vectors for Feature Extraction Type Journal Article
  Year 2018 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 60 Issue 4 Pages 512-524  
  Keywords  
  Abstract This paper presents a supervised subspace learning method called Kernel Generalized Discriminative Common Vectors (KGDCV), as a novel extension of the known Discriminative Common Vectors method with Kernels. Our method combines the advantages of kernel methods to model complex data and solve nonlinear
problems with moderate computational complexity, with the better generalization properties of generalized approaches for large dimensional data. These attractive combination makes KGDCV specially suited for feature extraction and classification in computer vision, image processing and pattern recognition applications. Two different approaches to this generalization are proposed, a first one based on the kernel trick (KT) and a second one based on the nonlinear projection trick (NPT) for even higher efficiency. Both methodologies
have been validated on four different image datasets containing faces, objects and handwritten digits, and compared against well known non-linear state-of-art methods. Results show better discriminant properties than other generalized approaches both linear or kernel. In addition, the KGDCV-NPT approach presents a considerable computational gain, without compromising the accuracy of the model.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.086; 600.130; 600.121; 600.118 Approved no  
  Call Number (down) Admin @ si @ DMH2018a Serial 3062  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Aura Hernandez-Sabate edit  url
openurl 
  Title Decremental generalized discriminative common vectors applied to images classification Type Journal Article
  Year 2017 Publication Knowledge-Based Systems Abbreviated Journal KBS  
  Volume 131 Issue Pages 46-57  
  Keywords Decremental learning; Generalized Discriminative Common Vectors; Feature extraction; Linear subspace methods; Classification  
  Abstract In this paper, a novel decremental subspace-based learning method called Decremental Generalized Discriminative Common Vectors method (DGDCV) is presented. The method makes use of the concept of decremental learning, which we introduce in the field of supervised feature extraction and classification. By efficiently removing unnecessary data and/or classes for a knowledge base, our methodology is able to update the model without recalculating the full projection or accessing to the previously processed training data, while retaining the previously acquired knowledge. The proposed method has been validated in 6 standard face recognition datasets, showing a considerable computational gain without compromising the accuracy of the model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118; 600.121 Approved no  
  Call Number (down) Admin @ si @ DMH2017a Serial 3003  
Permanent link to this record
 

 
Author Katerine Diaz; Aura Hernandez-Sabate; Antonio Lopez edit   pdf
doi  openurl
  Title A reduced feature set for driver head pose estimation Type Journal Article
  Year 2016 Publication Applied Soft Computing Abbreviated Journal ASOC  
  Volume 45 Issue Pages 98-107  
  Keywords Head pose estimation; driving performance evaluation; subspace based methods; linear regression  
  Abstract Evaluation of driving performance is of utmost importance in order to reduce road accident rate. Since driving ability includes visual-spatial and operational attention, among others, head pose estimation of the driver is a crucial indicator of driving performance. This paper proposes a new automatic method for coarse and fine head's yaw angle estimation of the driver. We rely on a set of geometric features computed from just three representative facial keypoints, namely the center of the eyes and the nose tip. With these geometric features, our method combines two manifold embedding methods and a linear regression one. In addition, the method has a confidence mechanism to decide if the classification of a sample is not reliable. The approach has been tested using the CMU-PIE dataset and our own driver dataset. Despite the very few facial keypoints required, the results are comparable to the state-of-the-art techniques. The low computational cost of the method and its robustness makes feasible to integrate it in massive consume devices as a real time application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.085; 600.076; Approved no  
  Call Number (down) Admin @ si @ DHL2016 Serial 2760  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: