toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Daniel Hernandez; Juan Carlos Moure; Toni Espinosa; Alejandro Chacon; David Vazquez; Antonio Lopez edit   pdf
openurl 
  Title Real-time 3D Reconstruction for Autonomous Driving via Semi-Global Matching Type Conference Article
  Year 2016 Publication GPU Technology Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords Stereo; Autonomous Driving; GPU; 3d reconstruction  
  Abstract Robust and dense computation of depth information from stereo-camera systems is a computationally demanding requirement for real-time autonomous driving. Semi-Global Matching (SGM) [1] approximates heavy-computation global algorithms results but with lower computational complexity, therefore it is a good candidate for a real-time implementation. SGM minimizes energy along several 1D paths across the image. The aim of this work is to provide a real-time system producing reliable results on energy-efficient hardware. Our design runs on a NVIDIA Titan X GPU at 104.62 FPS and on a NVIDIA Drive PX at 6.7 FPS, promising for real-time platforms  
  Address Silicon Valley; San Francisco; USA; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GTC  
  Notes ADAS; 600.085; 600.082; 600.076 Approved no  
  Call Number (down) ADAS @ adas @ HME2016 Serial 2738  
Permanent link to this record
 

 
Author Daniel Hernandez; Antonio Espinosa; David Vazquez; Antonio Lopez; Juan Carlos Moure edit   pdf
url  doi
openurl 
  Title GPU-accelerated real-time stixel computation Type Conference Article
  Year 2017 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1054-1062  
  Keywords Autonomous Driving; GPU; Stixel  
  Abstract The Stixel World is a medium-level, compact representation of road scenes that abstracts millions of disparity pixels into hundreds or thousands of stixels. The goal of this work is to implement and evaluate a complete multi-stixel estimation pipeline on an embedded, energyefficient, GPU-accelerated device. This work presents a full GPU-accelerated implementation of stixel estimation that produces reliable results at 26 frames per second (real-time) on the Tegra X1 for disparity images of 1024×440 pixels and stixel widths of 5 pixels, and achieves more than 400 frames per second on a high-end Titan X GPU card.  
  Address Santa Rosa; CA; USA; March 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes ADAS; 600.118 Approved no  
  Call Number (down) ADAS @ adas @ HEV2017b Serial 2812  
Permanent link to this record
 

 
Author Daniel Hernandez; Antonio Espinosa; David Vazquez; Antonio Lopez; Juan Carlos Moure edit   pdf
openurl 
  Title Embedded Real-time Stixel Computation Type Conference Article
  Year 2017 Publication GPU Technology Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords GPU; CUDA; Stixels; Autonomous Driving  
  Abstract  
  Address Silicon Valley; USA; May 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GTC  
  Notes ADAS; 600.118 Approved no  
  Call Number (down) ADAS @ adas @ HEV2017a Serial 2879  
Permanent link to this record
 

 
Author Daniel Hernandez; Alejandro Chacon; Antonio Espinosa; David Vazquez; Juan Carlos Moure; Antonio Lopez edit   pdf
url  openurl
  Title Embedded real-time stereo estimation via Semi-Global Matching on the GPU Type Conference Article
  Year 2016 Publication 16th International Conference on Computational Science Abbreviated Journal  
  Volume 80 Issue Pages 143-153  
  Keywords Autonomous Driving; Stereo; CUDA; 3d reconstruction  
  Abstract Dense, robust and real-time computation of depth information from stereo-camera systems is a computationally demanding requirement for robotics, advanced driver assistance systems (ADAS) and autonomous vehicles. Semi-Global Matching (SGM) is a widely used algorithm that propagates consistency constraints along several paths across the image. This work presents a real-time system producing reliable disparity estimation results on the new embedded energy-efficient GPU devices. Our design runs on a Tegra X1 at 41 frames per second for an image size of 640x480, 128 disparity levels, and using 4 path directions for the SGM method.  
  Address San Diego; CA; USA; June 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCS  
  Notes ADAS; 600.085; 600.082; 600.076 Approved no  
  Call Number (down) ADAS @ adas @ HCE2016a Serial 2740  
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate; Gabriel Villalonga; Jiaolong Xu; David Vazquez; Jaume Amores; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Multiview Random Forest of Local Experts Combining RGB and LIDAR data for Pedestrian Detection Type Conference Article
  Year 2015 Publication IEEE Intelligent Vehicles Symposium IV2015 Abbreviated Journal  
  Volume Issue Pages 356-361  
  Keywords Pedestrian Detection  
  Abstract Despite recent significant advances, pedestrian detection continues to be an extremely challenging problem in real scenarios. In order to develop a detector that successfully operates under these conditions, it becomes critical to leverage upon multiple cues, multiple imaging modalities and a strong multi-view classifier that accounts for different pedestrian views and poses. In this paper we provide an extensive evaluation that gives insight into how each of these aspects (multi-cue, multimodality and strong multi-view classifier) affect performance both individually and when integrated together. In the multimodality component we explore the fusion of RGB and depth maps obtained by high-definition LIDAR, a type of modality that is only recently starting to receive attention. As our analysis reveals, although all the aforementioned aspects significantly help in improving the performance, the fusion of visible spectrum and depth information allows to boost the accuracy by a much larger margin. The resulting detector not only ranks among the top best performers in the challenging KITTI benchmark, but it is built upon very simple blocks that are easy to implement and computationally efficient. These simple blocks can be easily replaced with more sophisticated ones recently proposed, such as the use of convolutional neural networks for feature representation, to further improve the accuracy.  
  Address Seoul; Corea; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area ACDC Expedition Conference IV  
  Notes ADAS; 600.076; 600.057; 600.054 Approved no  
  Call Number (down) ADAS @ adas @ GVX2015 Serial 2625  
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate; Gabriel Villalonga; German Ros; David Vazquez; Antonio Lopez edit   pdf
doi  openurl
  Title 3D-Guided Multiscale Sliding Window for Pedestrian Detection Type Conference Article
  Year 2015 Publication Pattern Recognition and Image Analysis, Proceedings of 7th Iberian Conference , ibPRIA 2015 Abbreviated Journal  
  Volume 9117 Issue Pages 560-568  
  Keywords Pedestrian Detection  
  Abstract The most relevant modules of a pedestrian detector are the candidate generation and the candidate classification. The former aims at presenting image windows to the latter so that they are classified as containing a pedestrian or not. Much attention has being paid to the classification module, while candidate generation has mainly relied on (multiscale) sliding window pyramid. However, candidate generation is critical for achieving real-time. In this paper we assume a context of autonomous driving based on stereo vision. Accordingly, we evaluate the effect of taking into account the 3D information (derived from the stereo) in order to prune the hundred of thousands windows per image generated by classical pyramidal sliding window. For our study we use a multimodal (RGB, disparity) and multi-descriptor (HOG, LBP, HOG+LBP) holistic ensemble based on linear SVM. Evaluation on data from the challenging KITTI benchmark suite shows the effectiveness of using 3D information to dramatically reduce the number of candidate windows, even improving the overall pedestrian detection accuracy.  
  Address Santiago de Compostela; España; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area ACDC Expedition Conference IbPRIA  
  Notes ADAS; 600.076; 600.057; 600.054 Approved no  
  Call Number (down) ADAS @ adas @ GVR2015 Serial 2585  
Permanent link to this record
 

 
Author David Geronimo; Angel Sappa; Antonio Lopez; Daniel Ponsa edit   pdf
url  openurl
  Title Adaptive Image Sampling and Windows Classification for On-board Pedestrian Detection Type Conference Article
  Year 2007 Publication Proceedings of the 5th International Conference on Computer Vision Systems Abbreviated Journal ICVS  
  Volume Issue Pages  
  Keywords Pedestrian Detection  
  Abstract On–board pedestrian detection is in the frontier of the state–of–the–art since it implies processing outdoor scenarios from a mobile platform and searching for aspect–changing objects in cluttered urban environments. Most promising approaches include the development of classifiers based on feature selection and machine learning. However, they use a large number of features which compromises real–time. Thus, methods for running the classifiers in only a few image windows must be provided. In this paper we contribute in both aspects, proposing a camera
pose estimation method for adaptive sparse image sampling, as well as a classifier for pedestrian detection based on Haar wavelets and edge orientation histograms as features and AdaBoost as learning machine. Both proposals are compared with relevant approaches in the literature, showing comparable results but reducing processing time by four for the sampling tasks and by ten for the classification one.
 
  Address Bielefeld (Germany)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (down) ADAS @ adas @ gsl2007a Serial 786  
Permanent link to this record
 

 
Author David Geronimo; Antonio Lopez; Angel Sappa edit   pdf
url  openurl
  Title Computer Vision Approaches for Pedestrian Detection: Visible Spectrum Survey Type Conference Article
  Year 2007 Publication 3rd Iberian Conference on Pattern Recognition and Image Analysis, LNCS 4477 Abbreviated Journal  
  Volume 1 Issue Pages 547–554  
  Keywords Pedestrian detection  
  Abstract Pedestrian detection from images of the visible spectrum is a high relevant area of research given its potential impact in the design of pedestrian protection systems. There are many proposals in the literature but they lack a comparative viewpoint. According to this, in this paper we first propose a common framework where we fit the different approaches, and second we use this framework to provide a comparative point of view of the details of such different approaches, pointing out also the main challenges to be solved in the future. In summary, we expect
this survey to be useful for both novel and experienced researchers in the field. In the first case, as a clarifying snapshot of the state of the art; in the second, as a way to unveil trends and to take conclusions from the comparative study.
 
  Address Girona (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor J. Marti et al.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (down) ADAS @ adas @ GLS2007 Serial 804  
Permanent link to this record
 

 
Author David Geronimo; Antonio Lopez; Daniel Ponsa; Angel Sappa edit   pdf
url  openurl
  Title Haar Wavelets and Edge Orientation Histograms for On-Board Pedestrian Detection Type Conference Article
  Year 2007 Publication 3rd Iberian Conference on Pattern Recognition and Image Analysis, LNCS 4477 Abbreviated Journal  
  Volume 1 Issue Pages 418–425  
  Keywords Pedestrian detection  
  Abstract  
  Address Girona (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor J. Marti et al.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number (down) ADAS @ adas @ GLP2007a Serial 805  
Permanent link to this record
 

 
Author Ishaan Gulrajani; Kundan Kumar; Faruk Ahmed; Adrien Ali Taiga; Francesco Visin; David Vazquez; Aaron Courville edit   pdf
url  openurl
  Title PixelVAE: A Latent Variable Model for Natural Images Type Conference Article
  Year 2017 Publication 5th International Conference on Learning Representations Abbreviated Journal  
  Volume Issue Pages  
  Keywords Deep Learning; Unsupervised Learning  
  Abstract Natural image modeling is a landmark challenge of unsupervised learning. Variational Autoencoders (VAEs) learn a useful latent representation and generate samples that preserve global structure but tend to suffer from image blurriness. PixelCNNs model sharp contours and details very well, but lack an explicit latent representation and have difficulty modeling large-scale structure in a computationally efficient way. In this paper, we present PixelVAE, a VAE model with an autoregressive decoder based on PixelCNN. The resulting architecture achieves state-of-the-art log-likelihood on binarized MNIST. We extend PixelVAE to a hierarchy of multiple latent variables at different scales; this hierarchical model achieves competitive likelihood on 64x64 ImageNet and generates high-quality samples on LSUN bedrooms.  
  Address Toulon; France; April 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICLR  
  Notes ADAS; 600.085; 600.076; 601.281; 600.118 Approved no  
  Call Number (down) ADAS @ adas @ GKA2017 Serial 2815  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: