toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Patricia Marquez; Debora Gil; R.Mester; Aura Hernandez-Sabate edit   pdf
openurl 
  Title Local Analysis of Confidence Measures for Optical Flow Quality Evaluation Type Conference Article
  Year 2014 Publication 9th International Conference on Computer Vision Theory and Applications Abbreviated Journal  
  Volume 3 Issue Pages 450-457  
  Keywords Optical Flow; Confidence Measure; Performance Evaluation.  
  Abstract (up) Optical Flow (OF) techniques facing the complexity of real sequences have been developed in the last years. Even using the most appropriate technique for our specific problem, at some points the output flow might fail to achieve the minimum error required for the system. Confidence measures computed from either input data or OF output should discard those points where OF is not accurate enough for its further use. It follows that evaluating the capabilities of a confidence measure for bounding OF error is as important as the definition
itself. In this paper we analyze different confidence measures and point out their advantages and limitations for their use in real world settings. We also explore the agreement with current tools for their evaluation of confidence measures performance.
 
  Address Lisboa; January 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISAPP  
  Notes IAM; ADAS; 600.044; 600.060; 600.057; 601.145; 600.076; 600.075 Approved no  
  Call Number Admin @ si @ MGM2014 Serial 2432  
Permanent link to this record
 

 
Author Naveen Onkarappa; Sujay M. Veerabhadrappa; Angel Sappa edit  doi
isbn  openurl
  Title Optical Flow in Onboard Applications: A Study on the Relationship Between Accuracy and Scene Texture Type Conference Article
  Year 2012 Publication 4th International Conference on Signal and Image Processing Abbreviated Journal  
  Volume 221 Issue Pages 257-267  
  Keywords  
  Abstract (up) Optical flow has got a major role in making advanced driver assistance systems (ADAS) a reality. ADAS applications are expected to perform efficiently in all kinds of environments, those are highly probable, that one can drive the vehicle in different kinds of roads, times and seasons. In this work, we study the relationship of optical flow with different roads, that is by analyzing optical flow accuracy on different road textures. Texture measures such as TeX , TeX and TeX are evaluated for this purpose. Further, the relation of regularization weight to the flow accuracy in the presence of different textures is also analyzed. Additionally, we present a framework to generate synthetic sequences of different textures in ADAS scenarios with ground-truth optical flow.  
  Address Coimbatore, India  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1876-1100 ISBN 978-81-322-0996-6 Medium  
  Area Expedition Conference ICSIP  
  Notes ADAS Approved no  
  Call Number Admin @ si @ OVS2012 Serial 2356  
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil; Aura Hernandez-Sabate edit   pdf
url  doi
openurl 
  Title A Confidence Measure for Assessing Optical Flow Accuracy in the Absence of Ground Truth Type Conference Article
  Year 2011 Publication IEEE International Conference on Computer Vision – Workshops Abbreviated Journal  
  Volume Issue Pages 2042-2049  
  Keywords IEEE International Conference on Computer Vision – Workshops  
  Abstract (up) Optical flow is a valuable tool for motion analysis in autonomous navigation systems. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in real world sequences. This paper introduces a measure of optical flow accuracy for Lucas-Kanade based flows in terms of the numerical stability of the data-term. We call this measure optical flow condition number. A statistical analysis over ground-truth data show a good statistical correlation between the condition number and optical flow error. Experiments on driving sequences illustrate its potential for autonomous navigation systems.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Barcelona (Spain) Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ MGH2011 Serial 1682  
Permanent link to this record
 

 
Author Zhijie Fang; Antonio Lopez edit   pdf
url  doi
openurl 
  Title Is the Pedestrian going to Cross? Answering by 2D Pose Estimation Type Conference Article
  Year 2018 Publication IEEE Intelligent Vehicles Symposium Abbreviated Journal  
  Volume Issue Pages 1271 - 1276  
  Keywords  
  Abstract (up) Our recent work suggests that, thanks to nowadays powerful CNNs, image-based 2D pose estimation is a promising cue for determining pedestrian intentions such as crossing the road in the path of the ego-vehicle, stopping before entering the road, and starting to walk or bending towards the road. This statement is based on the results obtained on non-naturalistic sequences (Daimler dataset), i.e. in sequences choreographed specifically for performing the study. Fortunately, a new publicly available dataset (JAAD) has appeared recently to allow developing methods for detecting pedestrian intentions in naturalistic driving conditions; more specifically, for addressing the relevant question is the pedestrian going to cross? Accordingly, in this paper we use JAAD to assess the usefulness of 2D pose estimation for answering such a question. We combine CNN-based pedestrian detection, tracking and pose estimation to predict the crossing action from monocular images. Overall, the proposed pipeline provides new state-ofthe-art results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IV  
  Notes ADAS; 600.124; 600.116; 600.118 Approved no  
  Call Number Admin @ si @ FaL2018 Serial 3181  
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate; Sebastian Ramos; David Vazquez; Antonio Lopez; Jaume Amores edit   pdf
doi  openurl
  Title Spatiotemporal Stacked Sequential Learning for Pedestrian Detection Type Conference Article
  Year 2015 Publication Pattern Recognition and Image Analysis, Proceedings of 7th Iberian Conference , ibPRIA 2015 Abbreviated Journal  
  Volume Issue Pages 3-12  
  Keywords SSL; Pedestrian Detection  
  Abstract (up) Pedestrian classifiers decide which image windows contain a pedestrian. In practice, such classifiers provide a relatively high response at neighbor windows overlapping a pedestrian, while the responses around potential false positives are expected to be lower. An analogous reasoning applies for image sequences. If there is a pedestrian located within a frame, the same pedestrian is expected to appear close to the same location in neighbor frames. Therefore, such a location has chances of receiving high classification scores during several frames, while false positives are expected to be more spurious. In this paper we propose to exploit such correlations for improving the accuracy of base pedestrian classifiers. In particular, we propose to use two-stage classifiers which not only rely on the image descriptors required by the base classifiers but also on the response of such base classifiers in a given spatiotemporal neighborhood. More specifically, we train pedestrian classifiers using a stacked sequential learning (SSL) paradigm. We use a new pedestrian dataset we have acquired from a car to evaluate our proposal at different frame rates. We also test on a well known dataset: Caltech. The obtained results show that our SSL proposal boosts detection accuracy significantly with a minimal impact on the computational cost. Interestingly, SSL improves more the accuracy at the most dangerous situations, i.e. when a pedestrian is close to the camera.  
  Address Santiago de Compostela; España; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area ACDC Expedition Conference IbPRIA  
  Notes ADAS; 600.057; 600.054; 600.076 Approved no  
  Call Number GRV2015; ADAS @ adas @ GRV2015 Serial 2454  
Permanent link to this record
 

 
Author Victor Campmany; Sergio Silva; Juan Carlos Moure; Toni Espinosa; David Vazquez; Antonio Lopez edit   pdf
openurl 
  Title GPU-based pedestrian detection for autonomous driving Type Conference Article
  Year 2016 Publication GPU Technology Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords Pedestrian Detection; GPU  
  Abstract (up) Pedestrian detection for autonomous driving is one of the hardest tasks within computer vision, and involves huge computational costs. Obtaining acceptable real-time performance, measured in frames per second (fps), for the most advanced algorithms is nowadays a hard challenge. Taking the work in [1] as our baseline, we propose a CUDA implementation of a pedestrian detection system that includes LBP and HOG as feature descriptors and SVM and Random forest as classifiers. We introduce significant algorithmic adjustments and optimizations to adapt the problem to the NVIDIA GPU architecture. The aim is to deploy a real-time system providing reliable results.  
  Address Silicon Valley; San Francisco; USA; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GTC  
  Notes ADAS; 600.085; 600.082; 600.076 Approved no  
  Call Number ADAS @ adas @ CSM2016 Serial 2737  
Permanent link to this record
 

 
Author David Geronimo; Antonio Lopez; Angel Sappa edit   pdf
url  openurl
  Title Computer Vision Approaches for Pedestrian Detection: Visible Spectrum Survey Type Conference Article
  Year 2007 Publication 3rd Iberian Conference on Pattern Recognition and Image Analysis, LNCS 4477 Abbreviated Journal  
  Volume 1 Issue Pages 547–554  
  Keywords Pedestrian detection  
  Abstract (up) Pedestrian detection from images of the visible spectrum is a high relevant area of research given its potential impact in the design of pedestrian protection systems. There are many proposals in the literature but they lack a comparative viewpoint. According to this, in this paper we first propose a common framework where we fit the different approaches, and second we use this framework to provide a comparative point of view of the details of such different approaches, pointing out also the main challenges to be solved in the future. In summary, we expect
this survey to be useful for both novel and experienced researchers in the field. In the first case, as a clarifying snapshot of the state of the art; in the second, as a way to unveil trends and to take conclusions from the comparative study.
 
  Address Girona (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor J. Marti et al.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ GLS2007 Serial 804  
Permanent link to this record
 

 
Author Javier Marin; David Vazquez; Antonio Lopez; Jaume Amores; Bastian Leibe edit   pdf
doi  openurl
  Title Random Forests of Local Experts for Pedestrian Detection Type Conference Article
  Year 2013 Publication 15th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 2592 - 2599  
  Keywords ADAS; Random Forest; Pedestrian Detection  
  Abstract (up) Pedestrian detection is one of the most challenging tasks in computer vision, and has received a lot of attention in the last years. Recently, some authors have shown the advantages of using combinations of part/patch-based detectors in order to cope with the large variability of poses and the existence of partial occlusions. In this paper, we propose a pedestrian detection method that efficiently combines multiple local experts by means of a Random Forest ensemble. The proposed method works with rich block-based representations such as HOG and LBP, in such a way that the same features are reused by the multiple local experts, so that no extra computational cost is needed with respect to a holistic method. Furthermore, we demonstrate how to integrate the proposed approach with a cascaded architecture in order to achieve not only high accuracy but also an acceptable efficiency. In particular, the resulting detector operates at five frames per second using a laptop machine. We tested the proposed method with well-known challenging datasets such as Caltech, ETH, Daimler, and INRIA. The method proposed in this work consistently ranks among the top performers in all the datasets, being either the best method or having a small difference with the best one.  
  Address Sydney; Australia; December 2013  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-5499 ISBN Medium  
  Area Expedition Conference ICCV  
  Notes ADAS; 600.057; 600.054 Approved no  
  Call Number ADAS @ adas @ MVL2013 Serial 2333  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Lluis Albarracin; Daniel Calvo; Nuria Gorgorio edit   pdf
openurl 
  Title EyeMath: Identifying Mathematics Problem Solving Processes in a RTS Video Game Type Conference Article
  Year 2016 Publication 5th International Conference Games and Learning Alliance Abbreviated Journal  
  Volume 10056 Issue Pages 50-59  
  Keywords Simulation environment; Automated Driving; Driver-Vehicle interaction  
  Abstract (up) Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GALA  
  Notes ADAS;IAM; Approved no  
  Call Number HAC2016 Serial 2864  
Permanent link to this record
 

 
Author Saad Minhas; Aura Hernandez-Sabate; Shoaib Ehsan; Katerine Diaz; Ales Leonardis; Antonio Lopez; Klaus McDonald Maier edit   pdf
openurl 
  Title LEE: A photorealistic Virtual Environment for Assessing Driver-Vehicle Interactions in Self-Driving Mode Type Conference Article
  Year 2016 Publication 14th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume 9915 Issue Pages 894-900  
  Keywords Simulation environment; Automated Driving; Driver-Vehicle interaction  
  Abstract (up) Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical.  
  Address Amsterdam; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes ADAS;IAM; 600.085; 600.076 Approved no  
  Call Number MHE2016 Serial 2865  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: