toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Katerine Diaz; Francesc J. Ferri edit  url
isbn  openurl
  Title Extensiones del método de vectores comunes discriminantes Aplicadas a la clasificación de imágenes Type Book Whole
  Year 2013 Publication Extensiones del método de vectores comunes discriminantes Aplicadas a la clasificación de imágenes Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Los métodos basados en subespacios son una herramienta muy utilizada en aplicaciones de visión por computador. Aquí se presentan y validan algunos algoritmos que hemos propuesto en este campo de investigación. El primer algoritmo está relacionado con una extensión del método de vectores comunes discriminantes con kernel, que reinterpreta el espacio nulo de la matriz de dispersión intra-clase del conjunto de entrenamiento para obtener las características discriminantes. Dentro de los métodos basados en subespacios existen diferentes tipos de entrenamiento. Uno de los más populares, pero no por ello uno de los más eficientes, es el aprendizaje por lotes. En este tipo de aprendizaje, todas las muestras del conjunto de entrenamiento tienen que estar disponibles desde el inicio. De este modo, cuando nuevas muestras se ponen a disposición del algoritmo, el sistema tiene que ser reentrenado de nuevo desde cero. Una alternativa a este tipo de entrenamiento es el aprendizaje incremental. Aquí­ se proponen diferentes algoritmos incrementales del método de vectores comunes discriminantes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-639-55339-0 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ DiF2013 Serial 2440  
Permanent link to this record
 

 
Author Naveen Onkarappa edit  isbn
openurl 
  Title Optical Flow in Driver Assistance Systems Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Motion perception is one of the most important attributes of the human brain. Visual motion perception consists in inferring speed and direction of elements in a scene based on visual inputs. Analogously, computer vision is assisted by motion cues in the scene. Motion detection in computer vision is useful in solving problems such as segmentation, depth from motion, structure from motion, compression, navigation and many others. These problems are common in several applications, for instance, video surveillance, robot navigation and advanced driver assistance systems (ADAS). One of the most widely used techniques for motion detection is the optical flow estimation. The work in this thesis attempts to make optical flow suitable for the requirements and conditions of driving scenarios. In this context, a novel space-variant representation called reverse log-polar representation is proposed that is shown to be better than the traditional log-polar space-variant representation for ADAS. The space-variant representations reduce the amount of data to be processed. Another major contribution in this research is related to the analysis of the influence of specific characteristics from driving scenarios on the optical flow accuracy. Characteristics such as vehicle speed and
road texture are considered in the aforementioned analysis. From this study, it is inferred that the regularization weight has to be adapted according to the required error measure and for different speeds and road textures. It is also shown that polar represented optical flow suits driving scenarios where predominant motion is translation. Due to the requirements of such a study and by the lack of needed datasets a new synthetic dataset is presented; it contains: i) sequences of different speeds and road textures in an urban scenario; ii) sequences with complex motion of an on-board camera; and iii) sequences with additional moving vehicles in the scene. The ground-truth optical flow is generated by the ray-tracing technique. Further, few applications of optical flow in ADAS are shown. Firstly, a robust RANSAC based technique to estimate horizon line is proposed. Then, an egomotion estimation is presented to compare the proposed space-variant representation with the classical one. As a final contribution, a modification in the regularization term is proposed that notably improves the results
in the ADAS applications. This adaptation is evaluated using a state of the art optical flow technique. The experiments on a public dataset (KITTI) validate the advantages of using the proposed modification.
 
  Address Bellaterra  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-1-9 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Nav2013 Serial 2447  
Permanent link to this record
 

 
Author Monica Piñol edit  isbn
openurl 
  Title Reinforcement Learning of Visual Descriptors for Object Recognition Type Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The human visual system is able to recognize the object in an image even if the object is partially occluded, from various points of view, in different colors, or with independence of the distance to the object. To do this, the eye obtains an image and extracts features that are sent to the brain, and then, in the brain the object is recognized. In computer vision, the object recognition branch tries to learns from the human visual system behaviour to achieve its goal. Hence, an algorithm is used to identify representative features of the scene (detection), then another algorithm is used to describe these points (descriptor) and finally the extracted information is used for classifying the object in the scene. The selection of this set of algorithms is a very complicated task and thus, a very active research field. In this thesis we are focused on the selection/learning of the best descriptor for a given image. In the state of the art there are several descriptors but we do not know how to choose the best descriptor because depends on scenes that we will use (dataset) and the algorithm chosen to do the classification. We propose a framework based on reinforcement learning and bag of features to choose the best descriptor according to the given image. The system can analyse the behaviour of different learning algorithms and descriptor sets. Furthermore the proposed framework for improving the classification/recognition ratio can be used with minor changes in other computer vision fields, such as video retrieval.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ricardo Toledo;Angel Sappa  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-5-7 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Piñ2014 Serial 2464  
Permanent link to this record
 

 
Author Alicia Fornes; Gemma Sanchez edit  doi
isbn  openurl
  Title Analysis and Recognition of Music Scores Type Book Chapter
  Year 2014 Publication Handbook of Document Image Processing and Recognition Abbreviated Journal  
  Volume E Issue Pages 749-774  
  Keywords  
  Abstract The analysis and recognition of music scores has attracted the interest of researchers for decades. Optical Music Recognition (OMR) is a classical research field of Document Image Analysis and Recognition (DIAR), whose aim is to extract information from music scores. Music scores contain both graphical and textual information, and for this reason, techniques are closely related to graphics recognition and text recognition. Since music scores use a particular diagrammatic notation that follow the rules of music theory, many approaches make use of context information to guide the recognition and solve ambiguities. This chapter overviews the main Optical Music Recognition (OMR) approaches. Firstly, the different methods are grouped according to the OMR stages, namely, staff removal, music symbol recognition, and syntactical analysis. Secondly, specific approaches for old and handwritten music scores are reviewed. Finally, online approaches and commercial systems are also commented.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-85729-860-7 Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ FoS2014 Serial 2484  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez edit  doi
isbn  openurl
  Title Unsupervised and Notation-Independent Wall Segmentation in Floor Plans Using a Combination of Statistical and Structural Strategies Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages 109-121  
  Keywords Graphics recognition; Floor plan analysis; Object segmentation  
  Abstract In this paper we present a wall segmentation approach in floor plans that is able to work independently to the graphical notation, does not need any pre-annotated data for learning, and is able to segment multiple-shaped walls such as beams and curved-walls. This method results from the combination of the wall segmentation approaches [3, 5] presented recently by the authors. Firstly, potential straight wall segments are extracted in an unsupervised way similar to [3], but restricting even more the wall candidates considered in the original approach. Then, based on [5], these segments are used to learn the texture pattern of walls and spot the lost instances. The presented combination of both methods has been tested on 4 available datasets with different notations and compared qualitatively and quantitatively to the state-of-the-art applied on these collections. Additionally, some qualitative results on floor plans directly downloaded from the Internet are reported in the paper. The overall performance of the method demonstrates either its adaptability to different wall notations and shapes, and to document qualities and resolutions.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ HVS2014 Serial 2535  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; David Fernandez; Alicia Fornes; Ernest Valveny; Gemma Sanchez; Josep Llados edit  doi
isbn  openurl
  Title Runlength Histogram Image Signature for Perceptual Retrieval of Architectural Floor Plans Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages 135-146  
  Keywords Graphics recognition; Graphics retrieval; Image classification  
  Abstract This paper proposes a runlength histogram signature as a perceptual descriptor of architectural plans in a retrieval scenario. The style of an architectural drawing is characterized by the perception of lines, shapes and texture. Such visual stimuli are the basis for defining semantic concepts as space properties, symmetry, density, etc. We propose runlength histograms extracted in vertical, horizontal and diagonal directions as a characterization of line and space properties in floorplans, so it can be roughly associated to a description of walls and room structure. A retrieval application illustrates the performance of the proposed approach, where given a plan as a query, similar ones are obtained from a database. A ground truth based on human observation has been constructed to validate the hypothesis. Additional retrieval results on sketched building’s facades are reported qualitatively in this paper. Its good description and its adaptability to two different sketch drawings despite its simplicity shows the interest of the proposed approach and opens a challenging research line in graphics recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.045; 600.056; 600.061; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ HFF2014 Serial 2536  
Permanent link to this record
 

 
Author Jiaolong Xu edit  isbn
openurl 
  Title Domain Adaptation of Deformable Part-based Models Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract On-board pedestrian detection is crucial for Advanced Driver Assistance Systems
(ADAS). An accurate classi cation is fundamental for vision-based pedestrian detection.
The underlying assumption for learning classi ers is that the training set and the deployment environment (testing) follow the same probability distribution regarding the features used by the classi ers. However, in practice, there are di erent reasons that can break this constancy assumption. Accordingly, reusing existing classi ers by adapting them from the previous training environment (source domain) to the new testing one (target domain) is an approach with increasing acceptance in the computer vision community. In this thesis we focus on the domain adaptation of deformable part-based models (DPMs) for pedestrian detection. As a prof of concept, we use a computer graphic based synthetic dataset, i.e. a virtual world, as the source domain, and adapt the virtual-world trained DPM detector to various real-world dataset.
We start by exploiting the maximum detection accuracy of the virtual-world
trained DPM. Even though, when operating in various real-world datasets, the virtualworld trained detector still su er from accuracy degradation due to the domain gap of virtual and real worlds. We then focus on domain adaptation of DPM. At the rst step, we consider single source and single target domain adaptation and propose two batch learning methods, namely A-SSVM and SA-SSVM. Later, we further consider leveraging multiple target (sub-)domains for progressive domain adaptation and propose a hierarchical adaptive structured SVM (HA-SSVM) for optimization. Finally, we extend HA-SSVM for the challenging online domain adaptation problem, aiming at making the detector to automatically adapt to the target domain online, without any human intervention. All of the proposed methods in this thesis do not require
revisiting source domain data. The evaluations are done on the Caltech pedestrian detection benchmark. Results show that SA-SSVM slightly outperforms A-SSVM and avoids accuracy drops as high as 15 points when comparing with a non-adapted detector. The hierarchical model learned by HA-SSVM further boosts the domain adaptation performance. Finally, the online domain adaptation method has demonstrated that it can achieve comparable accuracy to the batch learned models while not requiring manually label target domain examples. Domain adaptation for pedestrian detection is of paramount importance and a relatively unexplored area. We humbly hope the work in this thesis could provide foundations for future work in this area.
 
  Address April 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor Antonio Lopez  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-1-4 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Xu2015 Serial 2631  
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate edit  isbn
openurl 
  Title Multi-modal Pedestrian Detection Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pedestrian detection continues to be an extremely challenging problem in real scenarios, in which situations like illumination changes, noisy images, unexpected objects, uncontrolled scenarios and variant appearance of objects occur constantly. All these problems force the development of more robust detectors for relevant applications like vision-based autonomous vehicles, intelligent surveillance, and pedestrian tracking for behavior analysis. Most reliable vision-based pedestrian detectors base their decision on features extracted using a single sensor capturing complementary features, e.g., appearance, and texture. These features usually are extracted from the current frame, ignoring temporal information, or including it in a post process step e.g., tracking or temporal coherence. Taking into account these issues we formulate the following question: can we generate more robust pedestrian detectors by introducing new information sources in the feature extraction step?
In order to answer this question we develop different approaches for introducing new information sources to well-known pedestrian detectors. We start by the inclusion of temporal information following the Stacked Sequential Learning (SSL) paradigm which suggests that information extracted from the neighboring samples in a sequence can improve the accuracy of a base classifier.
We then focus on the inclusion of complementary information from different sensors like 3D point clouds (LIDAR – depth), far infrared images (FIR), or disparity maps (stereo pair cameras). For this end we develop a multi-modal framework in which information from different sensors is used for increasing detection accuracy (by increasing information redundancy). Finally we propose a multi-view pedestrian detector, this multi-view approach splits the detection problem in n sub-problems.
Each sub-problem will detect objects in a given specific view reducing in that way the variability problem faced when a single detectors is used for the whole problem. We show that these approaches obtain competitive results with other state-of-the-art methods but instead of design new features, we reuse existing ones boosting their performance.
 
  Address November 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor David Vazquez;Antonio Lopez;  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-7-6 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Gon2015 Serial 2706  
Permanent link to this record
 

 
Author Hanne Kause; Aura Hernandez-Sabate; Patricia Marquez; Andrea Fuster; Luc Florack; Hans van Assen; Debora Gil edit   pdf
doi  isbn
openurl 
  Title Confidence Measures for Assessing the HARP Algorithm in Tagged Magnetic Resonance Imaging Type Book Chapter
  Year 2015 Publication Statistical Atlases and Computational Models of the Heart. Revised selected papers of Imaging and Modelling Challenges 6th International Workshop, STACOM 2015, Held in Conjunction with MICCAI 2015 Abbreviated Journal  
  Volume 9534 Issue Pages 69-79  
  Keywords  
  Abstract Cardiac deformation and changes therein have been linked to pathologies. Both can be extracted in detail from tagged Magnetic Resonance Imaging (tMRI) using harmonic phase (HARP) images. Although point tracking algorithms have shown to have high accuracies on HARP images, these vary with position. Detecting and discarding areas with unreliable results is crucial for use in clinical support systems. This paper assesses the capability of two confidence measures (CMs), based on energy and image structure, for detecting locations with reduced accuracy in motion tracking results. These CMs were tested on a database of simulated tMRI images containing the most common artifacts that may affect tracking accuracy. CM performance is assessed based on its capability for HARP tracking error bounding and compared in terms of significant differences detected using a multi comparison analysis of variance that takes into account the most influential factors on HARP tracking performance. Results showed that the CM based on image structure was better suited to detect unreliable optical flow vectors. In addition, it was shown that CMs can be used to detect optical flow vectors with large errors in order to improve the optical flow obtained with the HARP tracking algorithm.  
  Address Munich; Germany; January 2015  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-28711-9 Medium  
  Area Expedition Conference STACOM  
  Notes ADAS; IAM; 600.075; 600.076; 600.060; 601.145 Approved no  
  Call Number Admin @ si @ KHM2015 Serial 2734  
Permanent link to this record
 

 
Author German Ros edit  isbn
openurl 
  Title Visual Scene Understanding for Autonomous Vehicles: Understanding Where and What Type Book Whole
  Year 2016 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Making Ground Autonomous Vehicles (GAVs) a reality as a service for the society is one of the major scientific and technological challenges of this century. The potential benefits of autonomous vehicles include reducing accidents, improving traffic congestion and better usage of road infrastructures, among others. These vehicles must operate in our cities, towns and highways, dealing with many different types of situations while respecting traffic rules and protecting human lives. GAVs are expected to deal with all types of scenarios and situations, coping with an uncertain and chaotic world.
Therefore, in order to fulfill these demanding requirements GAVs need to be endowed with the capability of understanding their surrounding at many different levels, by means of affordable sensors and artificial intelligence. This capacity to understand the surroundings and the current situation that the vehicle is involved in is called scene understanding. In this work we investigate novel techniques to bring scene understanding to autonomous vehicles by combining the use of cameras as the main source of information—due to their versatility and affordability—and algorithms based on computer vision and machine learning. We investigate different degrees of understanding of the scene, starting from basic geometric knowledge about where is the vehicle within the scene. A robust and efficient estimation of the vehicle location and pose with respect to a map is one of the most fundamental steps towards autonomous driving. We study this problem from the point of view of robustness and computational efficiency, proposing key insights to improve current solutions. Then we advance to higher levels of abstraction to discover what is in the scene, by recognizing and parsing all the elements present on a driving scene, such as roads, sidewalks, pedestrians, etc. We investigate this problem known as semantic segmentation, proposing new approaches to improve recognition accuracy and computational efficiency. We cover these points by focusing on key aspects such as: (i) how to leverage computation moving semantics to an offline process, (ii) how to train compact architectures based on deconvolutional networks to achieve their maximum potential, (iii) how to use virtual worlds in combination with domain adaptation to produce accurate models in a cost-effective fashion, and (iv) how to use transfer learning techniques to prepare models to new situations. We finally extend the previous level of knowledge enabling systems to reasoning about what has change in a scene with respect to a previous visit, which in return allows for efficient and cost-effective map updating.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa;Julio Guerrero;Antonio Lopez  
  Language Summary Language (up) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-945373-1-8 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Ros2016 Serial 2860  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: