toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Shida Beigpour; Christian Riess; Joost Van de Weijer; Elli Angelopoulou edit   pdf
doi  openurl
  Title (up) Multi-Illuminant Estimation with Conditional Random Fields Type Journal Article
  Year 2014 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 23 Issue 1 Pages 83-95  
  Keywords color constancy; CRF; multi-illuminant  
  Abstract Most existing color constancy algorithms assume uniform illumination. However, in real-world scenes, this is not often the case. Thus, we propose a novel framework for estimating the colors of multiple illuminants and their spatial distribution in the scene. We formulate this problem as an energy minimization task within a conditional random field over a set of local illuminant estimates. In order to quantitatively evaluate the proposed method, we created a novel data set of two-dominant-illuminant images comprised of laboratory, indoor, and outdoor scenes. Unlike prior work, our database includes accurate pixel-wise ground truth illuminant information. The performance of our method is evaluated on multiple data sets. Experimental results show that our framework clearly outperforms single illuminant estimators as well as a recently proposed multi-illuminant estimation approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes CIC; LAMP; 600.074; 600.079 Approved no  
  Call Number Admin @ si @ BRW2014 Serial 2451  
Permanent link to this record
 

 
Author Xinhang Song; Shuqiang Jiang; Luis Herranz edit  doi
openurl 
  Title (up) Multi-Scale Multi-Feature Context Modeling for Scene Recognition in the Semantic Manifold Type Journal Article
  Year 2017 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 26 Issue 6 Pages 2721-2735  
  Keywords  
  Abstract Before the big data era, scene recognition was often approached with two-step inference using localized intermediate representations (objects, topics, and so on). One of such approaches is the semantic manifold (SM), in which patches and images are modeled as points in a semantic probability simplex. Patch models are learned resorting to weak supervision via image labels, which leads to the problem of scene categories co-occurring in this semantic space. Fortunately, each category has its own co-occurrence patterns that are consistent across the images in that category. Thus, discovering and modeling these patterns are critical to improve the recognition performance in this representation. Since the emergence of large data sets, such as ImageNet and Places, these approaches have been relegated in favor of the much more powerful convolutional neural networks (CNNs), which can automatically learn multi-layered representations from the data. In this paper, we address many limitations of the original SM approach and related works. We propose discriminative patch representations using neural networks and further propose a hybrid architecture in which the semantic manifold is built on top of multiscale CNNs. Both representations can be computed significantly faster than the Gaussian mixture models of the original SM. To combine multiple scales, spatial relations, and multiple features, we formulate rich context models using Markov random fields. To solve the optimization problem, we analyze global and local approaches, where a top-down hierarchical algorithm has the best performance. Experimental results show that exploiting different types of contextual relations jointly consistently improves the recognition accuracy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ SJH2017a Serial 2963  
Permanent link to this record
 

 
Author Xiangyang Li; Luis Herranz; Shuqiang Jiang edit   pdf
url  openurl
  Title (up) Multifaceted Analysis of Fine-Tuning in Deep Model for Visual Recognition Type Journal
  Year 2020 Publication ACM Transactions on Data Science Abbreviated Journal ACM  
  Volume Issue Pages  
  Keywords  
  Abstract In recent years, convolutional neural networks (CNNs) have achieved impressive performance for various visual recognition scenarios. CNNs trained on large labeled datasets can not only obtain significant performance on most challenging benchmarks but also provide powerful representations, which can be used to a wide range of other tasks. However, the requirement of massive amounts of data to train deep neural networks is a major drawback of these models, as the data available is usually limited or imbalanced. Fine-tuning (FT) is an effective way to transfer knowledge learned in a source dataset to a target task. In this paper, we introduce and systematically investigate several factors that influence the performance of fine-tuning for visual recognition. These factors include parameters for the retraining procedure (e.g., the initial learning rate of fine-tuning), the distribution of the source and target data (e.g., the number of categories in the source dataset, the distance between the source and target datasets) and so on. We quantitatively and qualitatively analyze these factors, evaluate their influence, and present many empirical observations. The results reveal insights into what fine-tuning changes CNN parameters and provide useful and evidence-backed intuitions about how to implement fine-tuning for computer vision tasks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ LHJ2020 Serial 3423  
Permanent link to this record
 

 
Author Marçal Rusiñol; Volkmar Frinken; Dimosthenis Karatzas; Andrew Bagdanov; Josep Llados edit  doi
openurl 
  Title (up) Multimodal page classification in administrative document image streams Type Journal Article
  Year 2014 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 17 Issue 4 Pages 331-341  
  Keywords Digital mail room; Multimodal page classification; Visual and textual document description  
  Abstract In this paper, we present a page classification application in a banking workflow. The proposed architecture represents administrative document images by merging visual and textual descriptions. The visual description is based on a hierarchical representation of the pixel intensity distribution. The textual description uses latent semantic analysis to represent document content as a mixture of topics. Several off-the-shelf classifiers and different strategies for combining visual and textual cues have been evaluated. A final step uses an n-gram model of the page stream allowing a finer-grained classification of pages. The proposed method has been tested in a real large-scale environment and we report results on a dataset of 70,000 pages.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; LAMP; 600.056; 600.061; 601.240; 601.223; 600.077; 600.079 Approved no  
  Call Number Admin @ si @ RFK2014 Serial 2523  
Permanent link to this record
 

 
Author Rahma Kalboussi; Aymen Azaza; Joost Van de Weijer; Mehrez Abdellaoui; Ali Douik edit  url
openurl 
  Title (up) Object proposals for salient object segmentation in videos Type Journal Article
  Year 2020 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 79 Issue 13 Pages 8677-8693  
  Keywords  
  Abstract Salient object segmentation in videos is generally broken up in a video segmentation part and a saliency assignment part. Recently, object proposals, which are used to segment the image, have had significant impact on many computer vision applications, including image segmentation, object detection, and recently saliency detection in still images. However, their usage has not yet been evaluated for salient object segmentation in videos. Therefore, in this paper, we investigate the application of object proposals to salient object segmentation in videos. In addition, we propose a new motion feature derived from the optical flow structure tensor for video saliency detection. Experiments on two standard benchmark datasets for video saliency show that the proposed motion feature improves saliency estimation results, and that object proposals are an efficient method for salient object segmentation. Results on the challenging SegTrack v2 and Fukuchi benchmark data sets show that we significantly outperform the state-of-the-art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number KAW2020 Serial 3504  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: