toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Simeon Petkov; Xavier Carrillo; Petia Radeva; Carlo Gatta edit   pdf
doi  openurl
  Title Diaphragm border detection in coronary X-ray angiographies: New method and applications Type Journal Article
  Year 2014 Publication (up) Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume 38 Issue 4 Pages 296-305  
  Keywords  
  Abstract X-ray angiography is widely used in cardiac disease diagnosis during or prior to intravascular interventions. The diaphragm motion and the heart beating induce gray-level changes, which are one of the main obstacles in quantitative analysis of myocardial perfusion. In this paper we focus on detecting the diaphragm border in both single images or whole X-ray angiography sequences. We show that the proposed method outperforms state of the art approaches. We extend a previous publicly available data set, adding new ground truth data. We also compose another set of more challenging images, thus having two separate data sets of increasing difficulty. Finally, we show three applications of our method: (1) a strategy to reduce false positives in vessel enhanced images; (2) a digital diaphragm removal algorithm; (3) an improvement in Myocardial Blush Grade semi-automatic estimation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; LAMP; 600.079 Approved no  
  Call Number Admin @ si @ PCR2014 Serial 2468  
Permanent link to this record
 

 
Author Idoia Ruiz; Bogdan Raducanu; Rakesh Mehta; Jaume Amores edit   pdf
url  openurl
  Title Optimizing speed/accuracy trade-off for person re-identification via knowledge distillation Type Journal Article
  Year 2020 Publication (up) Engineering Applications of Artificial Intelligence Abbreviated Journal EAAI  
  Volume 87 Issue Pages 103309  
  Keywords Person re-identification; Network distillation; Image retrieval; Model compression; Surveillance  
  Abstract Finding a person across a camera network plays an important role in video surveillance. For a real-world person re-identification application, in order to guarantee an optimal time response, it is crucial to find the balance between accuracy and speed. We analyse this trade-off, comparing a classical method, that comprises hand-crafted feature description and metric learning, in particular, LOMO and XQDA, to deep learning based techniques, using image classification networks, ResNet and MobileNets. Additionally, we propose and analyse network distillation as a learning strategy to reduce the computational cost of the deep learning approach at test time. We evaluate both methods on the Market-1501 and DukeMTMC-reID large-scale datasets, showing that distillation helps reducing the computational cost at inference time while even increasing the accuracy performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.109; 600.120 Approved no  
  Call Number Admin @ si @ RRM2020 Serial 3401  
Permanent link to this record
 

 
Author Fei Yang; Yongmei Cheng; Joost Van de Weijer; Mikhail Mozerov edit  url
doi  openurl
  Title Improved Discrete Optical Flow Estimation With Triple Image Matching Cost Type Journal Article
  Year 2020 Publication (up) IEEE Access Abbreviated Journal ACCESS  
  Volume 8 Issue Pages 17093 - 17102  
  Keywords  
  Abstract Approaches that use more than two consecutive video frames in the optical flow estimation have a long research history. However, almost all such methods utilize extra information for a pre-processing flow prediction or for a post-processing flow correction and filtering. In contrast, this paper differs from previously developed techniques. We propose a new algorithm for the likelihood function calculation (alternatively the matching cost volume) that is used in the maximum a posteriori estimation. We exploit the fact that in general, optical flow is locally constant in the sense of time and the likelihood function depends on both the previous and the future frame. Implementation of our idea increases the robustness of optical flow estimation. As a result, our method outperforms 9% over the DCFlow technique, which we use as prototype for our CNN based computation architecture, on the most challenging MPI-Sintel dataset for the non-occluded mask metric. Furthermore, our approach considerably increases the accuracy of the flow estimation for the matching cost processing, consequently outperforming the original DCFlow algorithm results up to 50% in occluded regions and up to 9% in non-occluded regions on the MPI-Sintel dataset. The experimental section shows that the proposed method achieves state-of-the-arts results especially on the MPI-Sintel dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ YCW2020 Serial 3345  
Permanent link to this record
 

 
Author Cristhian A. Aguilera-Carrasco; Luis Felipe Gonzalez-Böhme; Francisco Valdes; Francisco Javier Quitral Zapata; Bogdan Raducanu edit  doi
openurl 
  Title A Hand-Drawn Language for Human–Robot Collaboration in Wood Stereotomy Type Journal Article
  Year 2023 Publication (up) IEEE Access Abbreviated Journal ACCESS  
  Volume 11 Issue Pages 100975 - 100985  
  Keywords  
  Abstract This study introduces a novel, hand-drawn language designed to foster human-robot collaboration in wood stereotomy, central to carpentry and joinery professions. Based on skilled carpenters’ line and symbol etchings on timber, this language signifies the location, geometry of woodworking joints, and timber placement within a framework. A proof-of-concept prototype has been developed, integrating object detectors, keypoint regression, and traditional computer vision techniques to interpret this language and enable an extensive repertoire of actions. Empirical data attests to the language’s efficacy, with the successful identification of a specific set of symbols on various wood species’ sawn surfaces, achieving a mean average precision (mAP) exceeding 90%. Concurrently, the system can accurately pinpoint critical positions that facilitate robotic comprehension of carpenter-indicated woodworking joint geometry. The positioning error, approximately 3 pixels, meets industry standards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ AGV2023 Serial 3969  
Permanent link to this record
 

 
Author Qingshan Chen; Zhenzhen Quan; Yujun Li; Chao Zhai; Mikhail Mozerov edit  url
doi  openurl
  Title An Unsupervised Domain Adaption Approach for Cross-Modality RGB-Infrared Person Re-Identification Type Journal Article
  Year 2023 Publication (up) IEEE Sensors Journal Abbreviated Journal IEEE-SENS  
  Volume 23 Issue 24 Pages  
  Keywords Q. Chen, Z. Quan, Y. Li, C. Zhai and M. G. Mozerov  
  Abstract Dual-camera systems commonly employed in surveillance serve as the foundation for RGB-infrared (IR) cross-modality person re-identification (ReID). However, significant modality differences give rise to inferior performance compared to single-modality scenarios. Furthermore, most existing studies in this area rely on supervised training with meticulously labeled datasets. Labeling RGB-IR image pairs is more complex than labeling conventional image data, and deploying pretrained models on unlabeled datasets can lead to catastrophic performance degradation. In contrast to previous solutions that focus solely on cross-modality or domain adaptation issues, this article presents an end-to-end unsupervised domain adaptation (UDA) framework for the cross-modality person ReID, which can simultaneously address both of these challenges. This model employs source domain classes, target domain clusters, and unclustered instance samples for the training, maximizing the comprehensive use of the dataset. Moreover, it addresses the problem of mismatched clustering labels between the two modalities in the target domain by incorporating a label matching module that reassigns reliable clusters with labels, ensuring correspondence between different modality labels. We construct the loss function by incorporating distinctiveness loss and multiplicity loss, both of which are determined by the similarity of neighboring features in the predicted feature space and the difference between distant features. This approach enables efficient feature clustering and cluster class assignment to occur concurrently. Eight UDA cross-modality person ReID experiments are conducted on three real datasets and six synthetic datasets. The experimental results unequivocally demonstrate that the proposed model outperforms the existing state-of-the-art algorithms to a significant degree. Notably, in RegDB → RegDB_light, the Rank-1 accuracy exhibits a remarkable improvement of 8.24%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ CQL2023 Serial 3884  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: