|   | 
Details
   web
Records Links
Author C. Alejandro Parraga; Olivier Penacchio; Maria Vanrell edit  openurl
Title Retinal Filtering Matches Natural Image Statistics at Low Luminance Levels Type Journal Article
Year (up) 2011 Publication Perception Abbreviated Journal PER  
Volume 40 Issue Pages 96  
Keywords  
Abstract The assumption that the retina’s main objective is to provide a minimum entropy representation to higher visual areas (ie efficient coding principle) allows to predict retinal filtering in space–time and colour (Atick, 1992 Network 3 213–251). This is achieved by considering the power spectra of natural images (which is proportional to 1/f2) and the suppression of retinal and image noise. However, most studies consider images within a limited range of lighting conditions (eg near noon) whereas the visual system’s spatial filtering depends on light intensity and the spatiochromatic properties of natural scenes depend of the time of the day. Here, we explore whether the dependence of visual spatial filtering on luminance match the changes in power spectrum of natural scenes at different times of the day. Using human cone-activation based naturalistic stimuli (from the Barcelona Calibrated Images Database), we show that for a range of luminance levels, the shape of the retinal CSF reflects the slope of the power spectrum at low spatial frequencies. Accordingly, the retina implements the filtering which best decorrelates the input signal at every luminance level. This result is in line with the body of work that places efficient coding as a guiding neural principle.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ PPV2011 Serial 1720  
Permanent link to this record
 

 
Author Maria Vanrell; Naila Murray; Robert Benavente; C. Alejandro Parraga; Xavier Otazu; Ramon Baldrich edit   pdf
url  isbn
openurl 
Title Perception Based Representations for Computational Colour Type Conference Article
Year (up) 2011 Publication 3rd International Workshop on Computational Color Imaging Abbreviated Journal  
Volume 6626 Issue Pages 16-30  
Keywords colour perception, induction, naming, psychophysical data, saliency, segmentation  
Abstract The perceived colour of a stimulus is dependent on multiple factors stemming out either from the context of the stimulus or idiosyncrasies of the observer. The complexity involved in combining these multiple effects is the main reason for the gap between classical calibrated colour spaces from colour science and colour representations used in computer vision, where colour is just one more visual cue immersed in a digital image where surfaces, shadows and illuminants interact seemingly out of control. With the aim to advance a few steps towards bridging this gap we present some results on computational representations of colour for computer vision. They have been developed by introducing perceptual considerations derived from the interaction of the colour of a point with its context. We show some techniques to represent the colour of a point influenced by assimilation and contrast effects due to the image surround and we show some results on how colour saliency can be derived in real images. We outline a model for automatic assignment of colour names to image points directly trained on psychophysical data. We show how colour segments can be perceptually grouped in the image by imposing shading coherence in the colour space.  
Address Milan, Italy  
Corporate Author Thesis  
Publisher Springer-Verlag Place of Publication Editor Raimondo Schettini, Shoji Tominaga, Alain Trémeau  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title LNCS  
Series Volume Series Issue Edition  
ISSN ISBN 978-3-642-20403-6 Medium  
Area Expedition Conference CCIW  
Notes CIC Approved no  
Call Number Admin @ si @ VMB2011 Serial 1733  
Permanent link to this record
 

 
Author Naila Murray; Maria Vanrell; Xavier Otazu; C. Alejandro Parraga edit   pdf
url  doi
isbn  openurl
Title Saliency Estimation Using a Non-Parametric Low-Level Vision Model Type Conference Article
Year (up) 2011 Publication IEEE conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages 433-440  
Keywords Gaussian mixture model;ad hoc parameter selection;center-surround inhibition windows;center-surround mechanism;color appearance model;convolution;eye-fixation data;human vision;innate spatial pooling mechanism;inverse wavelet transform;low-level visual front-end;nonparametric low-level vision model;saliency estimation;saliency map;scale integration;scale-weighted center-surround response;scale-weighting function;visual task;Gaussian processes;biology;biology computing;colour vision;computer vision;visual perception;wavelet transforms  
Abstract Many successful models for predicting attention in a scene involve three main steps: convolution with a set of filters, a center-surround mechanism and spatial pooling to construct a saliency map. However, integrating spatial information and justifying the choice of various parameter values remain open problems. In this paper we show that an efficient model of color appearance in human vision, which contains a principled selection of parameters as well as an innate spatial pooling mechanism, can be generalized to obtain a saliency model that outperforms state-of-the-art models. Scale integration is achieved by an inverse wavelet transform over the set of scale-weighted center-surround responses. The scale-weighting function (termed ECSF) has been optimized to better replicate psychophysical data on color appearance, and the appropriate sizes of the center-surround inhibition windows have been determined by training a Gaussian Mixture Model on eye-fixation data, thus avoiding ad-hoc parameter selection. Additionally, we conclude that the extension of a color appearance model to saliency estimation adds to the evidence for a common low-level visual front-end for different visual tasks.  
Address Colorado Springs  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1063-6919 ISBN 978-1-4577-0394-2 Medium  
Area Expedition Conference CVPR  
Notes CIC Approved no  
Call Number Admin @ si @ MVO2011 Serial 1757  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Jordi Roca; Maria Vanrell edit  url
doi  openurl
Title Do Basic Colors Influence Chromatic Adaptation? Type Journal Article
Year (up) 2011 Publication Journal of Vision Abbreviated Journal VSS  
Volume 11 Issue 11 Pages 85  
Keywords  
Abstract Color constancy (the ability to perceive colors relatively stable under different illuminants) is the result of several mechanisms spread across different neural levels and responding to several visual scene cues. It is usually measured by estimating the perceived color of a grey patch under an illuminant change. In this work, we hypothesize whether chromatic adaptation (without a reference white or grey) could be driven by certain colors, specifically those corresponding to the universal color terms proposed by Berlin and Kay (1969). To this end we have developed a new psychophysical paradigm in which subjects adjust the color of a test patch (in CIELab space) to match their memory of the best example of a given color chosen from the universal terms list (grey, red, green, blue, yellow, purple, pink, orange and brown). The test patch is embedded inside a Mondrian image and presented on a calibrated CRT screen inside a dark cabin. All subjects were trained to “recall” their most exemplary colors reliably from memory and asked to always produce the same basic colors when required under several adaptation conditions. These include achromatic and colored Mondrian backgrounds, under a simulated D65 illuminant and several colored illuminants. A set of basic colors were measured for each subject under neutral conditions (achromatic background and D65 illuminant) and used as “reference” for the rest of the experiment. The colors adjusted by the subjects in each adaptation condition were compared to the reference colors under the corresponding illuminant and a “constancy index” was obtained for each of them. Our results show that for some colors the constancy index was better than for grey. The set of best adapted colors in each condition were common to a majority of subjects and were dependent on the chromaticity of the illuminant and the chromatic background considered.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1534-7362 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ PRV2011 Serial 1759  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Andrew Bagdanov; Maria Vanrell edit   pdf
url  openurl
Title Portmanteau Vocabularies for Multi-Cue Image Representation Type Conference Article
Year (up) 2011 Publication 25th Annual Conference on Neural Information Processing Systems Abbreviated Journal  
Volume Issue Pages  
Keywords  
Abstract We describe a novel technique for feature combination in the bag-of-words model of image classification. Our approach builds discriminative compound words from primitive cues learned independently from training images. Our main observation is that modeling joint-cue distributions independently is more statistically robust for typical classification problems than attempting to empirically estimate the dependent, joint-cue distribution directly. We use Information theoretic vocabulary compression to find discriminative combinations of cues and the resulting vocabulary of portmanteau words is compact, has the cue binding property, and supports individual weighting of cues in the final image representation. State-of-the-art results on both the Oxford Flower-102 and Caltech-UCSD Bird-200 datasets demonstrate the effectiveness of our technique compared to other, significantly more complex approaches to multi-cue image representation  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference NIPS  
Notes CIC Approved no  
Call Number Admin @ si @ KWB2011 Serial 1865  
Permanent link to this record
 

 
Author Jordi Roca; C. Alejandro Parraga; Maria Vanrell edit  url
openurl 
Title Categorical Focal Colours are Structurally Invariant Under Illuminant Changes Type Conference Article
Year (up) 2011 Publication European Conference on Visual Perception Abbreviated Journal  
Volume Issue Pages 196  
Keywords  
Abstract The visual system perceives the colour of surfaces approximately constant under changes of illumination. In this work, we investigate how stable is the perception of categorical \“focal\” colours and their interrelations with varying illuminants and simple chromatic backgrounds. It has been proposed that best examples of colour categories across languages cluster in small regions of the colour space and are restricted to a set of 11 basic terms (Kay and Regier, 2003 Proceedings of the National Academy of Sciences of the USA 100 9085\–9089). Following this, we developed a psychophysical paradigm that exploits the ability of subjects to reliably reproduce the most representative examples of each category, adjusting multiple test patches embedded in a coloured Mondrian. The experiment was run on a CRT monitor (inside a dark room) under various simulated illuminants. We modelled the recorded data for each subject and adapted state as a 3D interconnected structure (graph) in Lab space. The graph nodes were the subject\’s focal colours at each adaptation state. The model allowed us to get a better distance measure between focal structures under different illuminants. We found that perceptual focal structures tend to be preserved better than the structures of the physical \“ideal\” colours under illuminant changes.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Perception 40 Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference ECVP  
Notes CIC Approved no  
Call Number Admin @ si @ RPV2011 Serial 1867  
Permanent link to this record
 

 
Author Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu edit   pdf
url  doi
openurl 
Title Low-dimensional and Comprehensive Color Texture Description Type Journal Article
Year (up) 2012 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
Volume 116 Issue I Pages 54-67  
Keywords  
Abstract Image retrieval can be dealt by combining standard descriptors, such as those of MPEG-7, which are defined independently for each visual cue (e.g. SCD or CLD for Color, HTD for texture or EHD for edges).
A common problem is to combine similarities coming from descriptors representing different concepts in different spaces. In this paper we propose a color texture description that bypasses this problem from its inherent definition. It is based on a low dimensional space with 6 perceptual axes. Texture is described in a 3D space derived from a direct implementation of the original Julesz’s Texton theory and color is described in a 3D perceptual space. This early fusion through the blob concept in these two bounded spaces avoids the problem and allows us to derive a sparse color-texture descriptor that achieves similar performance compared to MPEG-7 in image retrieval. Moreover, our descriptor presents comprehensive qualities since it can also be applied either in segmentation or browsing: (a) a dense image representation is defined from the descriptor showing a reasonable performance in locating texture patterns included in complex images; and (b) a vocabulary of basic terms is derived to build an intermediate level descriptor in natural language improving browsing by bridging semantic gap
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1077-3142 ISBN Medium  
Area Expedition Conference  
Notes CAT;CIC Approved no  
Call Number Admin @ si @ ASV2012 Serial 1827  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Maria Vanrell; Antonio Lopez edit   pdf
url  doi
isbn  openurl
Title Color Attributes for Object Detection Type Conference Article
Year (up) 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages 3306-3313  
Keywords pedestrian detection  
Abstract State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification,
leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape.
In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-ofthe-
art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.
 
Address Providence; Rhode Island; USA;  
Corporate Author Thesis  
Publisher IEEE Xplore Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium  
Area Expedition Conference CVPR  
Notes ADAS; CIC; Approved no  
Call Number Admin @ si @ KRW2012 Serial 1935  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Maria Vanrell edit   pdf
url  doi
openurl 
Title Modulating Shape Features by Color Attention for Object Recognition Type Journal Article
Year (up) 2012 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
Volume 98 Issue 1 Pages 49-64  
Keywords  
Abstract Bag-of-words based image representation is a successful approach for object recognition. Generally, the subsequent stages of the process: feature detection,feature description, vocabulary construction and image representation are performed independent of the intentioned object classes to be detected. In such a framework, it was found that the combination of different image cues, such as shape and color, often obtains below expected results. This paper presents a novel method for recognizing object categories when using ultiple cues by separately processing the shape and color cues and combining them by modulating the shape features by category specific color attention. Color is used to compute bottom up and top-down attention maps. Subsequently, these color attention maps are used to modulate the weights of the shape features. In regions with higher attention shape features are given more weight than in regions with low attention. We compare our approach with existing methods that combine color and shape cues on five data sets containing varied importance of both cues, namely, Soccer (color predominance), Flower (color and hape parity), PASCAL VOC 2007 and 2009 (shape predominance) and Caltech-101 (color co-interference). The experiments clearly demonstrate that in all five data sets our proposed framework significantly outperforms existing methods for combining color and shape information.  
Address  
Corporate Author Thesis  
Publisher Springer Netherlands Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0920-5691 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ KWV2012 Serial 1864  
Permanent link to this record
 

 
Author Javier Vazquez; J. Kevin O'Regan; Maria Vanrell; Graham D. Finlayson edit  url
doi  openurl
Title A new spectrally sharpened basis to predict colour naming, unique hues, and hue cancellation Type Journal Article
Year (up) 2012 Publication Journal of Vision Abbreviated Journal VSS  
Volume 12 Issue 6 (7) Pages 1-14  
Keywords  
Abstract When light is reflected off a surface, there is a linear relation between the three human photoreceptor responses to the incoming light and the three photoreceptor responses to the reflected light. Different colored surfaces have different linear relations. Recently, Philipona and O'Regan (2006) showed that when this relation is singular in a mathematical sense, then the surface is perceived as having a highly nameable color. Furthermore, white light reflected by that surface is perceived as corresponding precisely to one of the four psychophysically measured unique hues. However, Philipona and O'Regan's approach seems unrelated to classical psychophysical models of color constancy. In this paper we make this link. We begin by transforming cone sensors to spectrally sharpened counterparts. In sharp color space, illumination change can be modeled by simple von Kries type scalings of response values within each of the spectrally sharpened response channels. In this space, Philipona and O'Regan's linear relation is captured by a simple Land-type color designator defined by dividing reflected light by incident light. This link between Philipona and O'Regan's theory and Land's notion of color designator gives the model biological plausibility. We then show that Philipona and O'Regan's singular surfaces are surfaces which are very close to activating only one or only two of such newly defined spectrally sharpened sensors, instead of the usual three. Closeness to zero is quantified in a new simplified measure of singularity which is also shown to relate to the chromaticness of colors. As in Philipona and O'Regan's original work, our new theory accounts for a large variety of psychophysical color data.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ VOV2012 Serial 1998  
Permanent link to this record
 

 
Author Javier Vazquez; Maria Vanrell; Ramon Baldrich; Francesc Tous edit  url
doi  openurl
Title Color Constancy by Category Correlation Type Journal Article
Year (up) 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
Volume 21 Issue 4 Pages 1997-2007  
Keywords  
Abstract Finding color representations which are stable to illuminant changes is still an open problem in computer vision. Until now most approaches have been based on physical constraints or statistical assumptions derived from the scene, while very little attention has been paid to the effects that selected illuminants have
on the final color image representation. The novelty of this work is to propose
perceptual constraints that are computed on the corrected images. We define the
category hypothesis, which weights the set of feasible illuminants according to their ability to map the corrected image onto specific colors. Here we choose these colors as the universal color categories related to basic linguistic terms which have been psychophysically measured. These color categories encode natural color statistics, and their relevance across different cultures is indicated by the fact that they have received a common color name. From this category hypothesis we propose a fast implementation that allows the sampling of a large set of illuminants. Experiments prove that our method rivals current state-of-art performance without the need for training algorithmic parameters. Additionally, the method can be used as a framework to insert top-down information from other sources, thus opening further research directions in solving for color constancy.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1057-7149 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ VVB2012 Serial 1999  
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Sabine Süsstrunk; Maria Vanrell edit   pdf
url  doi
openurl 
Title Spectral sharpening by spherical sampling Type Journal Article
Year (up) 2012 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
Volume 29 Issue 7 Pages 1199-1210  
Keywords  
Abstract There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading “von Kries adaptation”: the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called “sharp sensors.” In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1084-7529 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ FVS2012 Serial 2000  
Permanent link to this record
 

 
Author Marc Serra; Olivier Penacchio; Robert Benavente; Maria Vanrell edit   pdf
url  doi
isbn  openurl
Title Names and Shades of Color for Intrinsic Image Estimation Type Conference Article
Year (up) 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages 278-285  
Keywords  
Abstract In the last years, intrinsic image decomposition has gained attention. Most of the state-of-the-art methods are based on the assumption that reflectance changes come along with strong image edges. Recently, user intervention in the recovery problem has proved to be a remarkable source of improvement. In this paper, we propose a novel approach that aims to overcome the shortcomings of pure edge-based methods by introducing strong surface descriptors, such as the color-name descriptor which introduces high-level considerations resembling top-down intervention. We also use a second surface descriptor, termed color-shade, which allows us to include physical considerations derived from the image formation model capturing gradual color surface variations. Both color cues are combined by means of a Markov Random Field. The method is quantitatively tested on the MIT ground truth dataset using different error metrics, achieving state-of-the-art performance.  
Address Providence, Rhode Island  
Corporate Author Thesis  
Publisher IEEE Xplore Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium  
Area Expedition Conference CVPR  
Notes CIC Approved no  
Call Number Admin @ si @ SPB2012 Serial 2026  
Permanent link to this record
 

 
Author Joost Van de Weijer; Robert Benavente; Maria Vanrell; Cordelia Schmid; Ramon Baldrich; Jacob Verbeek; Diane Larlus edit   pdf
openurl 
Title Color Naming Type Book Chapter
Year (up) 2012 Publication Color in Computer Vision: Fundamentals and Applications Abbreviated Journal  
Volume Issue 17 Pages 287-317  
Keywords  
Abstract  
Address  
Corporate Author Thesis  
Publisher John Wiley & Sons, Ltd. Place of Publication Editor Theo Gevers;Arjan Gijsenij;Joost Van de Weijer;Jan-Mark Geusebroek  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ WBV2012 Serial 2063  
Permanent link to this record