|
Records |
Links |
|
Author |
J. Mauri; Eduard Fernandez-Nofrerias; B. Garcia del Blanco; E. Iraculis; J.A. Gomez-Hospital; J. Comin; M.A. Sanchez Corral; F. Jara; A. Cequier; E. Esplugas; Debora Gil; J. Saludes; Petia Radeva; Ricardo Toledo; Juan J.Villanueva |

|
|
Title  |
Moviment del vas en l anàlisi d imatges d ecografia intracoronària: un model matemàtic |
Type |
Conference Article |
|
Year |
2000 |
Publication |
Congrés de la Societat Catalana de Cardiologia. |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;RV;ISE;MILAB;ADAS |
Approved |
no |
|
|
Call Number |
IAM @ iam @ MNG2000 |
Serial |
1621 |
|
Permanent link to this record |
|
|
|
|
Author |
Ferran Poveda; Debora Gil;Enric Marti |


|
|
Title  |
Multi-resolution DT-MRI cardiac tractography |
Type |
Conference Article |
|
Year |
2012 |
Publication |
Statistical Atlases And Computational Models Of The Heart: Imaging and Modelling Challenges |
Abbreviated Journal |
|
|
|
Volume |
7746 |
Issue |
|
Pages |
270-277 |
|
|
Keywords |
|
|
|
Abstract |
Even using objective measures from DT-MRI no consensus about myocardial architecture has been achieved so far. Streamlining provides good reconstructions at low level of detail, but falls short to give global abstract interpretations. In this paper, we present a multi-resolution methodology that is able to produce simplified representations of cardiac architecture. Our approach produces a reduced set of tracts that are representative of the main geometric features of myocardial anatomical structure. Experiments show that fiber geometry is preserved along reductions, which validates the simplified model for interpretation of cardiac architecture. |
|
|
Address |
Nice, France |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-36960-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
STACOM |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ PGM2012 |
Serial |
1986 |
|
Permanent link to this record |
|
|
|
|
Author |
Ferran Poveda; Debora Gil ;Albert Andaluz ;Enric Marti |


|
|
Title  |
Multiscale Tractography for Representing Heart Muscular Architecture |
Type |
Conference Article |
|
Year |
2011 |
Publication |
In MICCAI 2011 Workshop on Computational Diffusion MRI |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Deep understanding of myocardial structure of the heart would unravel crucial knowledge for clinical and medical procedures. Although the muscular architecture of the heart has been debated by countless researchers, the controversy is still alive. Diffusion Tensor MRI, DT-MRI, is a unique imaging technique for computational validation of the muscular structure of the heart. By the complex arrangement of myocites, existing techniques can not provide comprehensive descriptions of the global muscular architecture. In this paper we introduce a multiresolution reconstruction technique based on DT-MRI streamlining for simplified global myocardial model generation. Our reconstructions can restore the most complex myocardial structures and indicate a global helical organization |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
english |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CDRMI |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ PGA2011 |
Serial |
1681 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Andaluz; Francesc Carreras; Cristina Santa Marta;Debora Gil |


|
|
Title  |
Myocardial torsion estimation with Tagged-MRI in the OsiriX platform |
Type |
Conference Article |
|
Year |
2012 |
Publication |
ISBI Workshop on Open Source Medical Image Analysis software |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Myocardial torsion (MT) plays a crucial role in the assessment of the functionality of the
left ventricle. For this purpose, the IAM group at the CVC has developed the Harmonic Phase Flow (HPF) plugin for the Osirix DICOM platform . We have validated its funcionalty on sequences acquired using different protocols and including healthy and pathological cases. Results show similar torsion trends for SPAMM acquisitions, with pathological cases introducing expected deviations from the ground truth. Finally, we provide the plugin free of charge at http://iam.cvc.uab.es |
|
|
Address |
Barcelona, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IEEE |
Place of Publication |
|
Editor |
Wiro Niessen (Erasmus MC) and Marc Modat (UCL) |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ISBI |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ ACS2012 |
Serial |
1900 |
|
Permanent link to this record |
|
|
|
|
Author |
Carles Sanchez; Debora Gil; Jorge Bernal; F. Javier Sanchez; Marta Diez-Ferrer; Antoni Rosell |

|
|
Title  |
Navigation Path Retrieval from Videobronchoscopy using Bronchial Branches |
Type |
Conference Article |
|
Year |
2016 |
Publication |
19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops |
Abbreviated Journal |
|
|
|
Volume |
9401 |
Issue |
|
Pages |
62-70 |
|
|
Keywords |
Bronchoscopy navigation; Lumen center; Brochial branches; Navigation path; Videobronchoscopy |
|
|
Abstract |
Bronchoscopy biopsy can be used to diagnose lung cancer without risking complications of other interventions like transthoracic needle aspiration. During bronchoscopy, the clinician has to navigate through the bronchial tree to the target lesion. A main drawback is the difficulty to check whether the exploration is following the correct path. The usual guidance using fluoroscopy implies repeated radiation of the clinician, while alternative systems (like electromagnetic navigation) require specific equipment that increases intervention costs. We propose to compute the navigated path using anatomical landmarks extracted from the sole analysis of videobronchoscopy images. Such landmarks allow matching the current exploration to the path previously planned on a CT to indicate clinician whether the planning is being correctly followed or not. We present a feasibility study of our landmark based CT-video matching using bronchoscopic videos simulated on a virtual bronchoscopy interactive interface. |
|
|
Address |
Quebec; Canada; September 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MICCAIW |
|
|
Notes |
IAM; MV; 600.060; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SGB2016 |
Serial |
2885 |
|
Permanent link to this record |
|
|
|
|
Author |
Andrew Nolan; Daniel Serrano; Aura Hernandez-Sabate; Daniel Ponsa; Antonio Lopez |

|
|
Title  |
Obstacle mapping module for quadrotors on outdoor Search and Rescue operations |
Type |
Conference Article |
|
Year |
2013 |
Publication |
International Micro Air Vehicle Conference and Flight Competition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
UAV |
|
|
Abstract |
Obstacle avoidance remains a challenging task for Micro Aerial Vehicles (MAV), due to their limited payload capacity to carry advanced sensors. Unlike larger vehicles, MAV can only carry light weight sensors, for instance a camera, which is our main assumption in this work. We explore passive monocular depth estimation and propose a novel method Position Aided Depth Estimation
(PADE). We analyse PADE performance and compare it against the extensively used Time To Collision (TTC). We evaluate the accuracy, robustness to noise and speed of three Optical Flow (OF) techniques, combined with both depth estimation methods. Our results show PADE is more accurate than TTC at depths between 0-12 meters and is less sensitive to noise. Our findings highlight the potential application of PADE for MAV to perform safe autonomous navigation in
unknown and unstructured environments. |
|
|
Address |
Toulouse; France; September 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IMAV |
|
|
Notes |
ADAS; 600.054; 600.057;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ NSH2013 |
Serial |
2371 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Debora Gil; Petia Radeva |

|
|
Title  |
On the usefulness of supervised learning for vessel border detection in IntraVascular Imaging |
Type |
Conference Article |
|
Year |
2005 |
Publication |
Proceeding of the 2005 conference on Artificial Intelligence Research and Development |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
67-74 |
|
|
Keywords |
classification; vessel border modelling; IVUS |
|
|
Abstract |
IntraVascular UltraSound (IVUS) imaging is a useful tool in diagnosis of cardiac diseases since sequences completely show the morphology of coronary vessels. Vessel borders detection, especially the external adventitia layer, plays a central role in morphological measures and, thus, their segmentation feeds development of medical imaging techniques. Deterministic approaches fail to yield optimal results due to the large amount of IVUS artifacts and vessel borders descriptors. We propose using classification techniques to learn the set of descriptors and parameters that best detect vessel borders. Statistical hypothesis test on the error between automated detections and manually traced borders by 4 experts show that our detections keep within inter-observer variability. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IOS Press |
Place of Publication |
Amsterdam, The Netherlands |
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ HGR2005c |
Serial |
1549 |
|
Permanent link to this record |
|
|
|
|
Author |
Carles Sanchez; Jorge Bernal; Debora Gil; F. Javier Sanchez |


|
|
Title  |
On-line lumen centre detection in gastrointestinal and respiratory endoscopy |
Type |
Conference Article |
|
Year |
2013 |
Publication |
Second International Workshop Clinical Image-Based Procedures |
Abbreviated Journal |
|
|
|
Volume |
8361 |
Issue |
|
Pages |
31-38 |
|
|
Keywords |
Lumen centre detection; Bronchoscopy; Colonoscopy |
|
|
Abstract |
We present in this paper a novel lumen centre detection for gastrointestinal and respiratory endoscopic images. The proposed method is based on the appearance and geometry of the lumen, which we defined as the darkest image region which centre is a hub of image gradients. Experimental results validated on the first public annotated gastro-respiratory database prove the reliability of the method for a wide range of images (with precision over 95 %). |
|
|
Address |
Nagoya; Japan; September 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
Erdt, Marius and Linguraru, Marius George and Oyarzun Laura, Cristina and Shekhar, Raj and Wesarg, Stefan and González Ballester, Miguel Angel and Drechsler, Klaus |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-319-05665-4 |
Medium |
|
|
|
Area |
800 |
Expedition |
|
Conference |
CLIP |
|
|
Notes |
MV; IAM; 600.047; 600.044; 600.060 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SBG2013 |
Serial |
2302 |
|
Permanent link to this record |
|
|
|
|
Author |
Cristina Cañero; Petia Radeva; Oriol Pujol; Ricardo Toledo; Debora Gil; J. Saludes; Juan J. Villanueva; B. Garcia del Blanco; J. Mauri; E. Fernandez-Nofrerias; J.A. Gomez-Hospital; E. Iraculis; J. Comin; C. Quiles; F. Jara; A. Cequier; E. Esplugas |

|
|
Title  |
Optimal Stent Implantation: Three-dimensional Evaluation of the Mutual Position of Stent and Vessel via Intracoronary Ecography |
Type |
Conference Article |
|
Year |
1999 |
Publication |
Proceedings of International Conference on Computer in Cardiology (CIC´99) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
We present a new automatic technique to visualize and quantify the mutual position between the stent and the vessel wall by considering their three-dimensional reconstruction. Two deformable generalized cylinders adapt to the image features in all IVUS planes corresponding to the vessel wall and the stent in order to reconstruct the boundaries of the stent and the vessel in space. The image features that characterize the stent and the vessel wall are determined in terms of edge and ridge image detectors taking into account the gray level of the image pixels. We show that the 30 reconstruction by deformable cylinders is accurate and robust due to the spatial data coherence in the considered volumetric IVUS image. The main clinic utility of the stent and vessel reconstruction by deformable’ cylinders consists of its possibility to visualize and to assess the optimal stent introduction. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB; RV; IAM; ADAS; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ CRP1999a |
Serial |
1491 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Jaume Garcia; Mariano Vazquez; Ruth Aris; Guilleaume Houzeaux |


|
|
Title  |
Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function |
Type |
Conference Article |
|
Year |
2008 |
Publication |
8th World Congress on Computational Mechanichs (WCCM8) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Left Ventricle, Electromechanical Models, Image Processing, Magnetic Resonance. |
|
|
Abstract |
Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models [1] consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality [2]. In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp [3].
We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment.
The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted.
The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have
Figure 1: Scheme for the Left Ventricle Patient-Sensitive Model.
computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model. |
|
|
Address |
Venice; Italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
9788496736559 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ GGV2008b |
Serial |
993 |
|
Permanent link to this record |