|
Records |
Links |
|
Author |
Aura Hernandez-Sabate; Lluis Albarracin; F. Javier Sanchez |
|
|
Title |
Graph-Based Problem Explorer: A Software Tool to Support Algorithm Design Learning While Solving the Salesperson Problem |
Type |
Journal |
|
Year |
2020 |
Publication |
Mathematics |
Abbreviated Journal |
MATH |
|
|
Volume |
20 |
Issue |
8(9) |
Pages |
1595 |
|
|
Keywords |
STEM education; Project-based learning; Coding; software tool |
|
|
Abstract |
In this article, we present a sequence of activities in the form of a project in order to promote
learning on design and analysis of algorithms. The project is based on the resolution of a real problem, the salesperson problem, and it is theoretically grounded on the fundamentals of mathematical modelling. In order to support the students’ work, a multimedia tool, called Graph-based Problem Explorer (GbPExplorer), has been designed and refined to promote the development of computer literacy in engineering and science university students. This tool incorporates several modules to allow coding different algorithmic techniques solving the salesman problem. Based on an educational design research along five years, we observe that working with GbPExplorer during the project provides students with the possibility of representing the situation to be studied in the form of graphs and analyze them from a computational point of view. |
|
|
Address |
September 2020 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; ISE |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3722 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Guillermo Torres |
|
|
Title |
A multi-shape loss function with adaptive class balancing for the segmentation of lung structures |
Type |
Conference Article |
|
Year |
2020 |
Publication |
34th International Congress and Exhibition on Computer Assisted Radiology & Surgery |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Virtual; June 2020 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CARS |
|
|
Notes |
IAM; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GiT2020 |
Serial |
3472 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Antonio Esteban Lansaque; Agnes Borras; Esmitt Ramirez; Carles Sanchez |
|
|
Title |
Intraoperative Extraction of Airways Anatomy in VideoBronchoscopy |
Type |
Journal Article |
|
Year |
2020 |
Publication |
IEEE Access |
Abbreviated Journal |
ACCESS |
|
|
Volume |
8 |
Issue |
|
Pages |
159696 - 159704 |
|
|
Keywords |
|
|
|
Abstract |
A main bottleneck in bronchoscopic biopsy sampling is to efficiently reach the lesion navigating across bronchial levels. Any guidance system should be able to localize the scope position during the intervention with minimal costs and alteration of clinical protocols. With the final goal of an affordable image-based guidance, this work presents a novel strategy to extract and codify the anatomical structure of bronchi, as well as, the scope navigation path from videobronchoscopy. Experiments using interventional data show that our method accurately identifies the bronchial structure. Meanwhile, experiments using simulated data verify that the extracted navigation path matches the 3D route. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GEB2020 |
Serial |
3467 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Katerine Diaz; Carles Sanchez; Aura Hernandez-Sabate |
|
|
Title |
Early Screening of SARS-CoV-2 by Intelligent Analysis of X-Ray Images |
Type |
Miscellaneous |
|
Year |
2020 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Future SARS-CoV-2 virus outbreak COVID-XX might possibly occur during the next years. However the pathology in humans is so recent that many clinical aspects, like early detection of complications, side effects after recovery or early screening, are currently unknown. In spite of the number of cases of COVID-19, its rapid spread putting many sanitary systems in the edge of collapse has hindered proper collection and analysis of the data related to COVID-19 clinical aspects. We describe an interdisciplinary initiative that integrates clinical research, with image diagnostics and the use of new technologies such as artificial intelligence and radiomics with the aim of clarifying some of SARS-CoV-2 open questions. The whole initiative addresses 3 main points: 1) collection of standardize data including images, clinical data and analytics; 2) COVID-19 screening for its early diagnosis at primary care centers; 3) define radiomic signatures of COVID-19 evolution and associated pathologies for the early treatment of complications. In particular, in this paper we present a general overview of the project, the experimental design and first results of X-ray COVID-19 detection using a classic approach based on HoG and feature selection. Our experiments include a comparison to some recent methods for COVID-19 screening in X-Ray and an exploratory analysis of the feasibility of X-Ray COVID-19 screening. Results show that classic approaches can outperform deep-learning methods in this experimental setting, indicate the feasibility of early COVID-19 screening and that non-COVID infiltration is the group of patients most similar to COVID-19 in terms of radiological description of X-ray. Therefore, an efficient COVID-19 screening should be complemented with other clinical data to better discriminate these cases. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.139; 600.145; 601.337 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GDS2020 |
Serial |
3474 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Oriol Ramos Terrades; Raquel Perez |
|
|
Title |
Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution |
Type |
Conference Article |
|
Year |
2020 |
Publication |
Women in Geometry and Topology |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Barcelona; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; DAG; 600.139; 600.145; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRP2020 |
Serial |
3473 |
|
Permanent link to this record |
|
|
|
|
Author |
Guillermo Torres; Debora Gil |
|
|
Title |
A multi-shape loss function with adaptive class balancing for the segmentation of lung structures |
Type |
Journal Article |
|
Year |
2020 |
Publication |
International Journal of Computer Assisted Radiology and Surgery |
Abbreviated Journal |
IJCAR |
|
|
Volume |
15 |
Issue |
1 |
Pages |
S154-55 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ ToG2020 |
Serial |
3590 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Ramos Terrades; Albert Berenguel; Debora Gil |
|
|
Title |
A flexible outlier detector based on a topology given by graph communities |
Type |
Miscellaneous |
|
Year |
2020 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Outlier, or anomaly, detection is essential for optimal performance of machine learning methods and statistical predictive models. It is not just a technical step in a data cleaning process but a key topic in many fields such as fraudulent document detection, in medical applications and assisted diagnosis systems or detecting security threats. In contrast to population-based methods, neighborhood based local approaches are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. However, a main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters. This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world data sets show that our approach overall outperforms, both, local and global strategies in multi and single view settings. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; DAG; 600.139; 600.145; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RBG2020 |
Serial |
3475 |
|
Permanent link to this record |
|
|
|
|
Author |
Antonio Esteban Lansaque |
|
|
Title |
An Endoscopic Navigation System for Lung Cancer Biopsy |
Type |
Book Whole |
|
Year |
2019 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Lung cancer is one of the most diagnosed cancers among men and women. Actually,
lung cancer accounts for 13% of the total cases with a 5-year global survival
rate in patients. Although Early detection increases survival rate from 38% to 67%, accurate diagnosis remains a challenge. Pathological confirmation requires extracting a sample of the lesion tissue for its biopsy. The preferred procedure for tissue biopsy is called bronchoscopy. A bronchoscopy is an endoscopic technique for the internal exploration of airways which facilitates the performance of minimal invasive interventions with low risk for the patient. Recent advances in bronchoscopic devices have increased their use for minimal invasive diagnostic and intervention procedures, like lung cancer biopsy sampling. Despite the improvement in bronchoscopic device quality, there is a lack of intelligent computational systems for supporting in-vivo clinical decision during examinations. Existing technologies fail to accurately reach the lesion due to several aspects at intervention off-line planning and poor intra-operative guidance at exploration time. Existing guiding systems radiate patients and clinical staff,might be expensive and achieve a suboptimlal 70% of yield boost. Diagnostic yield could be improved reducing radiation and costs by developing intra-operative support systems able to guide the bronchoscopist to the lesion during the intervention. The goal of this PhD thesis is to develop an image-based navigation systemfor intra-operative guidance of bronchoscopists to a target lesion across a path previously planned on a CT-scan. We propose a 3D navigation system which uses the anatomy of video bronchoscopy frames to locate the bronchoscope within the airways. Once the bronchoscope is located, our navigation system is able to indicate the bifurcation which needs to be followed to reach the lesion. In order to facilitate an off-line validation
as realistic as possible, we also present a method for augmenting simulated virtual bronchoscopies with the appearance of intra-operative videos. Experiments performed on augmented and intra-operative videos, prove that our algorithm can be speeded up for an on-line implementation in the operating room. |
|
|
Address |
October 2019 |
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
Ediciones Graficas Rey |
Place of Publication |
|
Editor |
Debora Gil;Carles Sanchez |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-121011-0-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ Est2019 |
Serial |
3392 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Antoni Rosell |
|
|
Title |
Advances in Artificial Intelligence – How Lung Cancer CT Screening Will Progress? |
Type |
Abstract |
|
Year |
2019 |
Publication |
World Lung Cancer Conference |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Invited speaker |
|
|
Address |
Barcelona; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IASLC WCLC |
|
|
Notes |
IAM; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GiR2019 |
Serial |
3361 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Antonio Esteban Lansaque; Agnes Borras; Carles Sanchez |
|
|
Title |
Enhancing virtual bronchoscopy with intra-operative data using a multi-objective GAN |
Type |
Journal Article |
|
Year |
2019 |
Publication |
International Journal of Computer Assisted Radiology and Surgery |
Abbreviated Journal |
IJCAR |
|
|
Volume |
7 |
Issue |
1 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This manuscript has been withdrawn by bioRxiv due to upload of an incorrect version of the manuscript by the authors. Therefore, this manuscript should not be cited as reference for this project. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GEB2019 |
Serial |
3307 |
|
Permanent link to this record |