toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Agata Lapedriza; Jaume Garcia; Ernest Valveny; Robert Benavente; Miquel Ferrer; Gemma Sanchez edit  openurl
  Title Una experiencia de aprenentatge basada en projectes en el ambit de la informatica Type Miscellaneous
  Year (down) 2008 Publication V Jornades d’Innovacio Docent (UAB) Abbreviated Journal  
  Volume Issue Pages 63  
  Keywords  
  Abstract  
  Address Bellaterra (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR; IAM; DAG; CIC; MV Approved no  
  Call Number BCNPCL @ bcnpcl @ LGV2008 Serial 1030  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; David Rotger; Debora Gil edit   pdf
doi  openurl
  Title Image-based ECG sampling of IVUS sequences Type Conference Article
  Year (down) 2008 Publication Proc. IEEE Ultrasonics Symp. IUS 2008 Abbreviated Journal  
  Volume Issue Pages 1330-1333  
  Keywords Longitudinal Motion; Image-based ECG-gating; Fourier analysis  
  Abstract Longitudinal motion artifacts in IntraVascular UltraSound (IVUS) sequences hinders a properly 3D reconstruction and vessel measurements. Most of current techniques base on the ECG signal to obtain a gated pullback without the longitudinal artifact by using a specific hardware or the ECG signal itself. The potential of IVUS images processing for phase retrieval still remains little explored. In this paper, we present a fast forward image-based algorithm to approach ECG sampling. Inspired on the fact that maximum and minimum lumen areas are related to end-systole and end-diastole, our cardiac phase retrieval is based on the analysis of tissue density of mass along the sequence. The comparison between automatic and manual phase retrieval (0.07 ± 0.07 mm. of error) encourages a deep validation contrasting with ECG signals.  
  Address Beijing (China)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ HRG2008 Serial 1553  
Permanent link to this record
 

 
Author C. Santa-Marta; Jaume Garcia; A. Bajo; J.J. Vaquero; M. Ledesma-Carbayo; Debora Gil edit  openurl
  Title Influence of the Temporal Resolution on the Quantification of Displacement Fields in Cardiac Magnetic Resonance Tagged Images Type Conference Article
  Year (down) 2008 Publication XXVI Congreso Anual de la Sociedad Española de Ingenieria Biomedica Abbreviated Journal  
  Volume Issue Pages 352–353  
  Keywords  
  Abstract It is difficult to acquire tagged cardiac MR images with a high temporal and spatial resolution using clinical MR scanners. However, if such images are used for quantifying scores based on motion, it is essential a resolution as high as possibl e. This paper explores the influence of the temporal resolution of a tagged series on the quantification of myocardial dynamic parameters. To such purpose we have designed a SPAMM (Spatial Modulation of Magnetization) sequence allowing acquisition of sequences at simple and double temporal resolution. Sequences are processed to compute myocardial motion by an automatic technique based on the tracking of the harmonic phase of tagged images (the Harmonic Phase Flow, HPF). The results have been compared to manual tracking of myocardial tags. The error in displacement fields for double resolution sequences reduces 17%.  
  Address Valladolid  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Roberto hornero, Saniel Abasolo  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CASEIB  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ SGB2008 Serial 1033  
Permanent link to this record
 

 
Author Debora Gil; Jaume Garcia; Manuel Vazquez; Ruth Aris; Guillaume Houzeaux edit   pdf
url  openurl
  Title Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function Type Conference Article
  Year (down) 2008 Publication 8th World Congress on Computational Mechanichs (WCCM8)/5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) Abbreviated Journal  
  Volume Issue Pages  
  Keywords Left Ventricle; Electromechanical Models; Image Processing; Magnetic Resonance.  
  Abstract Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality . In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp. We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment. The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted. The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Venezia (Italia) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN B-31470-08 ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGV2008c Serial 1521  
Permanent link to this record
 

 
Author Debora Gil; Jaume Garcia; Mariano Vazquez; Ruth Aris; Guilleaume Houzeaux edit   pdf
isbn  openurl
  Title Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function Type Conference Article
  Year (down) 2008 Publication 8th World Congress on Computational Mechanichs (WCCM8) Abbreviated Journal  
  Volume Issue Pages  
  Keywords Left Ventricle, Electromechanical Models, Image Processing, Magnetic Resonance.  
  Abstract Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models [1] consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality [2]. In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp [3].
We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment.
The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted.
The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have
Figure 1: Scheme for the Left Ventricle Patient-Sensitive Model.
computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.
 
  Address Venice; Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9788496736559 Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GGV2008b Serial 993  
Permanent link to this record
 

 
Author Debora Gil; Oriol Rodriguez-Leon; Petia Radeva; Josepa Mauri edit   pdf
doi  openurl
  Title Myocardial Perfusion Characterization From Contrast Angiography Spectral Distribution Type Journal Article
  Year (down) 2008 Publication IEEE Transactions on Medical Imaging Abbreviated Journal  
  Volume 27 Issue 5 Pages 641-649  
  Keywords Contrast angiography; myocardial perfusion; spectral analysis.  
  Abstract Despite recovering a normal coronary flow after acute myocardial infarction, percutaneous coronary intervention does not guarantee a proper perfusion (irrigation) of the infarcted area. This damage in microcirculation integrity may detrimentally affect the patient survival. Visual assessment of the myocardium opacification in contrast angiography serves to define a subjective score of the microcirculation integrity myocardial blush analysis (MBA). Although MBA correlates with patient prognosis its visual assessment is a very difficult task that requires of a highly expertise training in order to achieve a good intraobserver and interobserver agreement. In this paper, we provide objective descriptors of the myocardium staining pattern by analyzing the spectrum of the image local statistics. The descriptors proposed discriminate among the different phenomena observed in the angiographic sequence and allow defining an objective score of the myocardial perfusion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GRR2008 Serial 1541  
Permanent link to this record
 

 
Author Enric Marti edit  openurl
  Title Aplicació de la metodología d’Aprenentatge basat en Proyectes en l’assignatura de Gràfics per Computador d’enginyeria Informàtica. Balanç de Quatre anys d’experiència Type Miscellaneous
  Year (down) 2008 Publication revista EINES Abbreviated Journal  
  Volume 6 Issue Pages 85-99  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ MAR2008b Serial 1585  
Permanent link to this record
 

 
Author Enric Marti edit  openurl
  Title Project Based Learning in engineering Type Miscellaneous
  Year (down) 2008 Publication Simposium on Problem Based learning (PBL) Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lleida Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ MAR2008a Serial 1586  
Permanent link to this record
 

 
Author Enric Marti; Debora Gil; Carme Julia edit  isbn
openurl 
  Title Experiencia d aplicació de la metodología d aprenentatge per proyectes en assignatures d Enginyeria Informàtica per a una millor adaptació als crèdits ECTS i EEES Type Miscellaneous
  Year (down) 2008 Publication Experiències docents innovadores de la UAB en ciències experimentals i tecnologies i en ciències de la salud Abbreviated Journal  
  Volume 1 Issue Pages 57-68  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher UAB Place of Publication Editor IDES-UAB; M.Enric Martinez, E.A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-490-2576-1 Medium  
  Area Expedition Conference  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MGJ2008 Serial 1592  
Permanent link to this record
 

 
Author Enric Marti; Debora Gil; Marc Vivet ; Carme Julia edit   pdf
openurl 
  Title Balance de cuatro años de experiencia en la implantación de la metodología de Aprendizaje Basado en Proyectos en la asignatura de Gráficos por Computador en ingeniería Informática Type Miscellaneous
  Year (down) 2008 Publication Actas V Jornadas Internacionales de Innovación Universitaria Abbreviated Journal  
  Volume Issue Pages  
  Keywords Aprendizaje cooperativo; aprendizaje basado en proyectos; experiencias docentes.  
  Abstract En este trabajo se presentan los resultados de la aplicación de la metodología del aprendizaje cooperativo a la docencia de dos asignaturas de programación en ingeniería informática. ‘Algoritmos y programación’ y ‘Lenguajes de programación’ son dos asignaturas complementarias que se organizan entorno a un proyecto común que engloba los contenidos de ambas asignaturas. En la docencia de una parte muy importante de estas asignaturas, la metodología del aprendizaje cooperativo se ha adaptado a sus características específicas. Como muestra de esta adaptación presentamos dos ejemplos de las actividades desarrolladas dentro de la docencia de estas asignaturas. Después de tres años de aplicación, el análisis a nivel cualitativo y cuantitativo de los resultados muestra que éstos son muy satisfactorios y que la aplicación del método cooperativo ha mejorado de forma considerable el rendimiento de los alumnos en ambas asignaturas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS Approved no  
  Call Number IAM @ iam @ MGV2008a Serial 1598  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: