toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Aura Hernandez-Sabate; Jose Elias Yauri; Pau Folch; Miquel Angel Piera; Debora Gil edit  doi
openurl 
  Title Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals Type Journal Article
  Year (down) 2022 Publication Applied Sciences Abbreviated Journal APPLSCI  
  Volume 12 Issue 5 Pages 2298  
  Keywords Cognitive states; Mental workload; EEG analysis; Neural networks; Multimodal data fusion  
  Abstract The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment.  
  Address February 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ADAS; 600.139; 600.145; 600.118 Approved no  
  Call Number Admin @ si @ Serial 3720  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Julien Enconniere; Saryani Asmayawati; Pau Folch; Juan Borrego-Carazo; Miquel Angel Piera edit  doi
openurl 
  Title E-Pilots: A System to Predict Hard Landing During the Approach Phase of Commercial Flights Type Journal Article
  Year (down) 2022 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 10 Issue Pages 7489-7503  
  Keywords  
  Abstract More than half of all commercial aircraft operation accidents could have been prevented by executing a go-around. Making timely decision to execute a go-around manoeuvre can potentially reduce overall aviation industry accident rate. In this paper, we describe a cockpit-deployable machine learning system to support flight crew go-around decision-making based on the prediction of a hard landing event.
This work presents a hybrid approach for hard landing prediction that uses features modelling temporal dependencies of aircraft variables as inputs to a neural network. Based on a large dataset of 58177 commercial flights, the results show that our approach has 85% of average sensitivity with 74% of average specificity at the go-around point. It follows that our approach is a cockpit-deployable recommendation system that outperforms existing approaches.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.118; 600.145 Approved no  
  Call Number Admin @ si @ Serial 3721  
Permanent link to this record
 

 
Author Guillermo Torres; Sonia Baeza; Carles Sanchez; Ignasi Guasch; Antoni Rosell; Debora Gil edit  doi
openurl 
  Title An Intelligent Radiomic Approach for Lung Cancer Screening Type Journal Article
  Year (down) 2022 Publication Applied Sciences Abbreviated Journal APPLSCI  
  Volume 12 Issue 3 Pages 1568  
  Keywords Lung cancer; Early diagnosis; Screening; Neural networks; Image embedding; Architecture optimization  
  Abstract The efficiency of lung cancer screening for reducing mortality is hindered by the high rate of false positives. Artificial intelligence applied to radiomics could help to early discard benign cases from the analysis of CT scans. The available amount of data and the fact that benign cases are a minority, constitutes a main challenge for the successful use of state of the art methods (like deep learning), which can be biased, over-fitted and lack of clinical reproducibility. We present an hybrid approach combining the potential of radiomic features to characterize nodules in CT scans and the generalization of the feed forward networks. In order to obtain maximal reproducibility with minimal training data, we propose an embedding of nodules based on the statistical significance of radiomic features for malignancy detection. This representation space of lesions is the input to a feed
forward network, which architecture and hyperparameters are optimized using own-defined metrics of the diagnostic power of the whole system. Results of the best model on an independent set of patients achieve 100% of sensitivity and 83% of specificity (AUC = 0.94) for malignancy detection.
 
  Address Jan 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ Serial 3699  
Permanent link to this record
 

 
Author Juan Borrego-Carazo; Carles Sanchez; David Castells; Jordi Carrabina; Debora Gil edit  doi
openurl 
  Title BronchoPose: an analysis of data and model configuration for vision-based bronchoscopy pose estimation Type Miscellaneous
  Year (down) 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords Videobronchoscopy guiding; Deep learning; Architecture optimization; Datasets; Standardized evaluation framework; Pose estimation  
  Abstract Vision-based bronchoscopy (VB) models require the registration of the virtual lung model with the frames from the video bronchoscopy to provide effective guidance during the biopsy. The registration can be achieved by either tracking the position and orientation of the bronchoscopy camera or by calibrating its deviation from the pose (position and orientation) simulated in the virtual lung model. Recent advances in neural networks and temporal image processing have provided new opportunities for guided bronchoscopy. However, such progress has been hindered by the lack of comparative experimental conditions.
In the present paper, we share a novel synthetic dataset allowing for a fair comparison of methods. Moreover, this paper investigates several neural network architectures for the learning of temporal information at different levels of subject personalization. In order to improve orientation measurement, we also present a standardized comparison framework and a novel metric for camera orientation learning. Results on the dataset show that the proposed metric and architectures, as well as the standardized conditions, provide notable improvements to current state-of-the-art camera pose estimation in video bronchoscopy.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number Admin @ si @ Serial 3702  
Permanent link to this record
 

 
Author Miquel Angel Piera; Jose Luis Muñoz; Debora Gil; Gonzalo Martin; Jordi Manzano edit  doi
openurl 
  Title A Socio-Technical Simulation Model for the Design of the Future Single Pilot Cockpit: An Opportunity to Improve Pilot Performance Type Journal Article
  Year (down) 2022 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 10 Issue Pages 22330-22343  
  Keywords Human factors ; Performance evaluation ; Simulation; Sociotechnical systems ; System performance  
  Abstract The future deployment of single pilot operations must be supported by new cockpit computer services. Such services require an adaptive context-aware integration of technical functionalities with the concurrent tasks that a pilot must deal with. Advanced artificial intelligence supporting services and improved communication capabilities are the key enabling technologies that will render future cockpits more integrated with the present digitalized air traffic management system. However, an issue in the integration of such technologies is the lack of socio-technical analysis in the design of these teaming mechanisms. A key factor in determining how and when a service support should be provided is the dynamic evolution of pilot workload. This paper investigates how the socio-technical model-based systems engineering approach paves the way for the design of a digital assistant framework by formalizing this workload. The model was validated in an Airbus A-320 cockpit simulator, and the results confirmed the degraded pilot behavioral model and the performance impact according to different contextual flight deck information. This study contributes to practical knowledge for designing human-machine task-sharing systems.  
  Address Feb 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number Admin @ si @ Serial 3697  
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; Oliver Valero; B. Cardenas; G. Fonseka; E. Anton; Alvaro Pascual; Richard Frodsham; Zaida Sarrate edit  doi
openurl 
  Title Time to match; when do homologous chromosomes become closer? Type Journal Article
  Year (down) 2022 Publication Chromosoma Abbreviated Journal CHRO  
  Volume Issue Pages  
  Keywords  
  Abstract In most eukaryotes, pairing of homologous chromosomes is an essential feature of meiosis that ensures homologous recombination and segregation. However, when the pairing process begins, it is still under investigation. Contrasting data exists in Mus musculus, since both leptotene DSB-dependent and preleptotene DSB-independent mechanisms have been described. To unravel this contention, we examined homologous pairing in pre-meiotic and meiotic Mus musculus cells using a threedimensional fuorescence in situ hybridization-based protocol, which enables the analysis of the entire karyotype using DNA painting probes. Our data establishes in an unambiguously manner that 73.83% of homologous chromosomes are already paired at premeiotic stages (spermatogonia-early preleptotene spermatocytes). The percentage of paired homologous chromosomes increases to 84.60% at mid-preleptotene-zygotene stage, reaching 100% at pachytene stage. Importantly, our results demonstrate a high percentage of homologous pairing observed before the onset of meiosis; this pairing does not occur randomly, as the percentage was higher than that observed in somatic cells (19.47%) and between nonhomologous chromosomes (41.1%). Finally, we have also observed that premeiotic homologous pairing is asynchronous and independent of the chromosome size, GC content, or presence of NOR regions.  
  Address August, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 601.139; 600.145; 600.096 Approved no  
  Call Number Admin @ si @ Serial 3719  
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Albert Berenguel; Debora Gil edit  doi
openurl 
  Title A Flexible Outlier Detector Based on a Topology Given by Graph Communities Type Journal Article
  Year (down) 2022 Publication Big Data Research Abbreviated Journal BDR  
  Volume 29 Issue Pages 100332  
  Keywords Classification algorithms; Detection algorithms; Description of feature space local structure; Graph communities; Machine learning algorithms; Outlier detectors  
  Abstract Outlier detection is essential for optimal performance of machine learning methods and statistical predictive models. Their detection is especially determinant in small sample size unbalanced problems, since in such settings outliers become highly influential and significantly bias models. This particular experimental settings are usual in medical applications, like diagnosis of rare pathologies, outcome of experimental personalized treatments or pandemic emergencies. In contrast to population-based methods, neighborhood based local approaches compute an outlier score from the neighbors of each sample, are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. A main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters, like the number of neighbors.
This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world and synthetic data sets show that our approach outperforms, both, local and global strategies in multi and single view settings.
 
  Address August 28, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; IAM; 600.140; 600.121; 600.139; 600.145; 600.159 Approved no  
  Call Number Admin @ si @ Serial 3718  
Permanent link to this record
 

 
Author Debora Gil; Oriol Ramos Terrades; Raquel Perez edit  openurl
  Title Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution Type Book Chapter
  Year (down) 2021 Publication Extended Abstracts GEOMVAP 2019, Trends in Mathematics 15 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Abnormalities in radiomic measures correlate to genomic alterations prone to alter the outcome of personalized anti-cancer treatments. TOPiomics is a new method for the early detection of variations in tumor imaging phenotype from a topological structure in multi-view radiomic spaces.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Nature Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; DAG; 600.120; 600.145; 600.139 Approved no  
  Call Number Admin @ si @ GRP2021 Serial 3594  
Permanent link to this record
 

 
Author Jose Yauri; Aura Hernandez-Sabate; Pau Folch; Debora Gil edit  doi
openurl 
  Title Mental Workload Detection Based on EEG Analysis Type Conference Article
  Year (down) 2021 Publication Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. Abbreviated Journal  
  Volume 339 Issue Pages 268-277  
  Keywords Cognitive states; Mental workload; EEG analysis; Neural Networks.  
  Abstract The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation.
 
  Address Virtual; October 20-22 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CCIA  
  Notes IAM; 600.139; 600.118; 600.145 Approved no  
  Call Number Admin @ si @ Serial 3723  
Permanent link to this record
 

 
Author Marta Ligero; Alonso Garcia Ruiz; Cristina Viaplana; Guillermo Villacampa; Maria V Raciti; Jaid Landa; Ignacio Matos; Juan Martin Liberal; Maria Ochoa de Olza; Cinta Hierro; Joaquin Mateo; Macarena Gonzalez; Rafael Morales Barrera; Cristina Suarez; Jordi Rodon; Elena Elez; Irene Braña; Eva Muñoz-Couselo; Ana Oaknin; Roberta Fasani; Paolo Nuciforo; Debora Gil; Carlota Rubio Perez; Joan Seoane; Enriqueta Felip; Manuel Escobar; Josep Tabernero; Joan Carles; Rodrigo Dienstmann; Elena Garralda; Raquel Perez Lopez edit  url
doi  openurl
  Title A CT-based radiomics signature is associated with response to immune checkpoint inhibitors in advanced solid tumors Type Journal Article
  Year (down) 2021 Publication Radiology Abbreviated Journal  
  Volume 299 Issue 1 Pages 109-119  
  Keywords  
  Abstract Background Reliable predictive imaging markers of response to immune checkpoint inhibitors are needed. Purpose To develop and validate a pretreatment CT-based radiomics signature to predict response to immune checkpoint inhibitors in advanced solid tumors. Materials and Methods In this retrospective study, a radiomics signature was developed in patients with advanced solid tumors (including breast, cervix, gastrointestinal) treated with anti-programmed cell death-1 or programmed cell death ligand-1 monotherapy from August 2012 to May 2018 (cohort 1). This was tested in patients with bladder and lung cancer (cohorts 2 and 3). Radiomics variables were extracted from all metastases delineated at pretreatment CT and selected by using an elastic-net model. A regression model combined radiomics and clinical variables with response as the end point. Biologic validation of the radiomics score with RNA profiling of cytotoxic cells (cohort 4) was assessed with Mann-Whitney analysis. Results The radiomics signature was developed in 85 patients (cohort 1: mean age, 58 years ± 13 [standard deviation]; 43 men) and tested on 46 patients (cohort 2: mean age, 70 years ± 12; 37 men) and 47 patients (cohort 3: mean age, 64 years ± 11; 40 men). Biologic validation was performed in a further cohort of 20 patients (cohort 4: mean age, 60 years ± 13; 14 men). The radiomics signature was associated with clinical response to immune checkpoint inhibitors (area under the curve [AUC], 0.70; 95% CI: 0.64, 0.77; P < .001). In cohorts 2 and 3, the AUC was 0.67 (95% CI: 0.58, 0.76) and 0.67 (95% CI: 0.56, 0.77; P < .001), respectively. A radiomics-clinical signature (including baseline albumin level and lymphocyte count) improved on radiomics-only performance (AUC, 0.74 [95% CI: 0.63, 0.84; P < .001]; Akaike information criterion, 107.00 and 109.90, respectively). Conclusion A pretreatment CT-based radiomics signature is associated with response to immune checkpoint inhibitors, likely reflecting the tumor immunophenotype. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Summers in this issue.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.145 Approved no  
  Call Number Admin @ si @ LGV2021 Serial 3593  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: