|
Records |
Links |
|
Author |
Guillermo Torres; Debora Gil |

|
|
Title |
A multi-shape loss function with adaptive class balancing for the segmentation of lung structures |
Type |
Journal Article |
|
Year |
2020 |
Publication |
International Journal of Computer Assisted Radiology and Surgery |
Abbreviated Journal |
IJCAR |
|
|
Volume  |
15 |
Issue |
1 |
Pages |
S154-55 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ ToG2020 |
Serial |
3590 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Oriol Ramos Terrades; Raquel Perez |

|
|
Title |
Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution |
Type |
Book Chapter |
|
Year |
2021 |
Publication |
Extended Abstracts GEOMVAP 2019, Trends in Mathematics 15 |
Abbreviated Journal |
|
|
|
Volume  |
15 |
Issue |
|
Pages |
89–93 |
|
|
Keywords |
|
|
|
Abstract |
Abnormalities in radiomic measures correlate to genomic alterations prone to alter the outcome of personalized anti-cancer treatments. TOPiomics is a new method for the early detection of variations in tumor imaging phenotype from a topological structure in multi-view radiomic spaces. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Nature |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; DAG; 600.120; 600.145; 600.139 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRP2021 |
Serial |
3594 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Ruth Aris; Agnes Borras; Esmitt Ramirez; Rafael Sebastian; Mariano Vazquez |


|
|
Title |
Influence of fiber connectivity in simulations of cardiac biomechanics |
Type |
Journal Article |
|
Year |
2019 |
Publication |
International Journal of Computer Assisted Radiology and Surgery |
Abbreviated Journal |
IJCAR |
|
|
Volume  |
14 |
Issue |
1 |
Pages |
63–72 |
|
|
Keywords |
Cardiac electromechanical simulations; Diffusion tensor imaging; Fiber connectivity |
|
|
Abstract |
PURPOSE:
Personalized computational simulations of the heart could open up new improved approaches to diagnosis and surgery assistance systems. While it is fully recognized that myocardial fiber orientation is central for the construction of realistic computational models of cardiac electromechanics, the role of its overall architecture and connectivity remains unclear. Morphological studies show that the distribution of cardiac muscular fibers at the basal ring connects epicardium and endocardium. However, computational models simplify their distribution and disregard the basal loop. This work explores the influence in computational simulations of fiber distribution at different short-axis cuts.
METHODS:
We have used a highly parallelized computational solver to test different fiber models of ventricular muscular connectivity. We have considered two rule-based mathematical models and an own-designed method preserving basal connectivity as observed in experimental data. Simulated cardiac functional scores (rotation, torsion and longitudinal shortening) were compared to experimental healthy ranges using generalized models (rotation) and Mahalanobis distances (shortening, torsion).
RESULTS:
The probability of rotation was significantly lower for ruled-based models [95% CI (0.13, 0.20)] in comparison with experimental data [95% CI (0.23, 0.31)]. The Mahalanobis distance for experimental data was in the edge of the region enclosing 99% of the healthy population.
CONCLUSIONS:
Cardiac electromechanical simulations of the heart with fibers extracted from experimental data produce functional scores closer to healthy ranges than rule-based models disregarding architecture connectivity. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.096; 601.323; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GAB2019a |
Serial |
3133 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell |


|
|
Title |
Segmentation of Distal Airways using Structural Analysis |
Type |
Journal Article |
|
Year |
2019 |
Publication |
PloS one |
Abbreviated Journal |
Plos |
|
|
Volume  |
14 |
Issue |
12 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Segmentation of airways in Computed Tomography (CT) scans is a must for accurate support of diagnosis and intervention of many pulmonary disorders. In particular, lung cancer diagnosis would benefit from segmentations reaching most distal airways. We present a method that combines descriptors of bronchi local appearance and graph global structural analysis to fine-tune thresholds on the descriptors adapted for each bronchial level. We have compared our method to the top performers of the EXACT09 challenge and to a commercial software for biopsy planning evaluated in an own-collected data-base of high resolution CT scans acquired under different breathing conditions. Results on EXACT09 data show that our method provides a high leakage reduction with minimum loss in airway detection. Results on our data-base show the reliability across varying breathing conditions and a competitive performance for biopsy planning compared to a commercial solution. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GSB2019 |
Serial |
3357 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Elias Yauri; M. Lagos; H. Vega-Huerta; P. de-la-Cruz; G.L.E Maquen-Niño; E. Condor-Tinoco |

|
|
Title |
Detection of Epileptic Seizures Based-on Channel Fusion and Transformer Network in EEG Recordings |
Type |
Journal Article |
|
Year |
2023 |
Publication |
International Journal of Advanced Computer Science and Applications |
Abbreviated Journal |
IJACSA |
|
|
Volume  |
14 |
Issue |
5 |
Pages |
1067-1074 |
|
|
Keywords |
Epilepsy; epilepsy detection; EEG; EEG channel fusion; convolutional neural network; self-attention |
|
|
Abstract |
According to the World Health Organization, epilepsy affects more than 50 million people in the world, and specifically, 80% of them live in developing countries. Therefore, epilepsy has become among the major public issue for many governments and deserves to be engaged. Epilepsy is characterized by uncontrollable seizures in the subject due to a sudden abnormal functionality of the brain. Recurrence of epilepsy attacks change people’s lives and interferes with their daily activities. Although epilepsy has no cure, it could be mitigated with an appropriated diagnosis and medication. Usually, epilepsy diagnosis is based on the analysis of an electroencephalogram (EEG) of the patient. However, the process of searching for seizure patterns in a multichannel EEG recording is a visual demanding and time consuming task, even for experienced neurologists. Despite the recent progress in automatic recognition of epilepsy, the multichannel nature of EEG recordings still challenges current methods. In this work, a new method to detect epilepsy in multichannel EEG recordings is proposed. First, the method uses convolutions to perform channel fusion, and next, a self-attention network extracts temporal features to classify between interictal and ictal epilepsy states. The method was validated in the public CHB-MIT dataset using the k-fold cross-validation and achieved 99.74% of specificity and 99.15% of sensitivity, surpassing current approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3856 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Petia Radeva |


|
|
Title |
A Regularized Curvature Flow Designed for a Selective Shape Restoration |
Type |
Journal Article |
|
Year |
2004 |
Publication |
IEEE Transactions on Image Processing |
Abbreviated Journal |
|
|
|
Volume  |
13 |
Issue |
|
Pages |
1444–1458 |
|
|
Keywords |
Geometric flows, nonlinear filtering, shape recovery. |
|
|
Abstract |
Among all filtering techniques, those based exclu- sively on image level sets (geometric flows) have proven to be the less sensitive to the nature of noise and the most contrast preserving. A common feature to existent curvature flows is that they penalize high curvature, regardless of the curve regularity. This constitutes a major drawback since curvature extreme values are standard descriptors of the contour geometry. We argue that an operator designed with shape recovery purposes should include a term penalizing irregularity in the curvature rather than its magnitude. To this purpose, we present a novel geometric flow that includes a function that measures the degree of local irregularity present in the curve. A main advantage is that it achieves non-trivial steady states representing a smooth model of level curves in a noisy image. Performance of our approach is compared to classical filtering techniques in terms of quality in the restored image/shape and asymptotic behavior. We empirically prove that our approach is the technique that achieves the best compromise between image quality and evolution stabilization. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
BCNPCL @ bcnpcl @ GiR2004b |
Serial |
491 |
|
Permanent link to this record |
|
|
|
|
Author |
Misael Rosales; Petia Radeva; Oriol Rodriguez-Leor; Debora Gil |


|
|
Title |
Modelling of image-catheter motion for 3-D IVUS |
Type |
Journal Article |
|
Year |
2009 |
Publication |
Medical image analysis |
Abbreviated Journal |
MIA |
|
|
Volume  |
13 |
Issue |
1 |
Pages |
91-104 |
|
|
Keywords |
Intravascular ultrasound (IVUS); Motion estimation; Motion decomposition; Fourier |
|
|
Abstract |
Three-dimensional intravascular ultrasound (IVUS) allows to visualize and obtain volumetric measurements of coronary lesions through an exploration of the cross sections and longitudinal views of arteries. However, the visualization and subsequent morpho-geometric measurements in IVUS longitudinal cuts are subject to distortion caused by periodic image/vessel motion around the IVUS catheter. Usually, to overcome the image motion artifact ECG-gating and image-gated approaches are proposed, leading to slowing the pullback acquisition or disregarding part of IVUS data. In this paper, we argue that the image motion is due to 3-D vessel geometry as well as cardiac dynamics, and propose a dynamic model based on the tracking of an elliptical vessel approximation to recover the rigid transformation and align IVUS images without loosing any IVUS data. We report an extensive validation with synthetic simulated data and in vivo IVUS sequences of 30 patients achieving an average reduction of the image artifact of 97% in synthetic data and 79% in real-data. Our study shows that IVUS alignment improves longitudinal analysis of the IVUS data and is a necessary step towards accurate reconstruction and volumetric measurements of 3-D IVUS. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;MILAB |
Approved |
no |
|
|
Call Number |
IAM @ iam @ RRR2009 |
Serial |
1646 |
|
Permanent link to this record |
|
|
|
|
Author |
Marta Diez-Ferrer; Debora Gil; Elena Carreño; Susana Padrones; Samantha Aso |

|
|
Title |
Positive Airway Pressure-Enhanced CT to Improve Virtual Bronchoscopic Navigation |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Journal of Thoracic Oncology |
Abbreviated Journal |
JTO |
|
|
Volume  |
12 |
Issue |
1S |
Pages |
S596-S597 |
|
|
Keywords |
Thorax CT; diagnosis; Peripheral Pulmonary Nodule |
|
|
Abstract |
A main weakness of virtual bronchoscopic navigation (VBN) is unsuccessful segmentation of distal branches approaching peripheral pulmonary nodules (PPN). CT scan acquisition protocol is pivotal for segmentation covering the utmost periphery. We hypothesize that application of continuous positive airway pressure (CPAP) during CT acquisition could improve visualization and segmentation of peripheral bronchi. The purpose of the present pilot study is to compare quality of segmentations under 4 CT acquisition modes: inspiration (INSP), expiration (EXP) and both with CPAP (INSP-CPAP and EXP-CPAP). |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.096; 600.075; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DGC2017a |
Serial |
2883 |
|
Permanent link to this record |
|
|
|
|
Author |
Guillermo Torres; Sonia Baeza; Carles Sanchez; Ignasi Guasch; Antoni Rosell; Debora Gil |

|
|
Title |
An Intelligent Radiomic Approach for Lung Cancer Screening |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Applied Sciences |
Abbreviated Journal |
APPLSCI |
|
|
Volume  |
12 |
Issue |
3 |
Pages |
1568 |
|
|
Keywords |
Lung cancer; Early diagnosis; Screening; Neural networks; Image embedding; Architecture optimization |
|
|
Abstract |
The efficiency of lung cancer screening for reducing mortality is hindered by the high rate of false positives. Artificial intelligence applied to radiomics could help to early discard benign cases from the analysis of CT scans. The available amount of data and the fact that benign cases are a minority, constitutes a main challenge for the successful use of state of the art methods (like deep learning), which can be biased, over-fitted and lack of clinical reproducibility. We present an hybrid approach combining the potential of radiomic features to characterize nodules in CT scans and the generalization of the feed forward networks. In order to obtain maximal reproducibility with minimal training data, we propose an embedding of nodules based on the statistical significance of radiomic features for malignancy detection. This representation space of lesions is the input to a feed
forward network, which architecture and hyperparameters are optimized using own-defined metrics of the diagnostic power of the whole system. Results of the best model on an independent set of patients achieve 100% of sensitivity and 83% of specificity (AUC = 0.94) for malignancy detection. |
|
|
Address |
Jan 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TBS2022 |
Serial |
3699 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Jose Elias Yauri; Pau Folch; Miquel Angel Piera; Debora Gil |

|
|
Title |
Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Applied Sciences |
Abbreviated Journal |
APPLSCI |
|
|
Volume  |
12 |
Issue |
5 |
Pages |
2298 |
|
|
Keywords |
Cognitive states; Mental workload; EEG analysis; Neural networks; Multimodal data fusion |
|
|
Abstract |
The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment. |
|
|
Address |
February 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; ADAS; 600.139; 600.145; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HYF2022 |
Serial |
3720 |
|
Permanent link to this record |