|
Records |
Links |
|
Author |
Enric Marti; Jordi Regincos; Juan Jose Villanueva; Jaime Lopez-Krahe |


|
|
Title |
Line drawing interpretation as polyhedral objects to man-machine interaction in CAD systems |
Type |
Book Chapter |
|
Year |
1994 |
Publication  |
Advances in Pattern Recognition and Image Analysis, |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
158-169 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
World Scientific Pub. |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
981-02-1872-9 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM;ISE |
Approved |
no |
|
|
Call Number |
IAM @ iam @ MRL1994 |
Serial |
1609 |
|
Permanent link to this record |
|
|
|
|
Author |
Enric Marti; Petia Radeva; Ricardo Toledo; Jordi Vitria |

|
|
Title |
Experiencia de aplicación de la metodología de aprendizaje por proyectos en asignaturas de Ingeniería Informática para una mejor adaptación a los créditos ECTS i al Espacio Europeo de Educación Superior |
Type |
Miscellaneous |
|
Year |
2005 |
Publication  |
Agencia de Gestio d´Ajuts Universitaris I de Recerca (AGAUR) |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
Agencia de Gestio d´Ajuts Universitaris I de Recerca (AGAUR) |
Expedition |
|
Conference |
|
|
|
Notes |
IAM;RV;OR;MILAB;ADAS;MV |
Approved |
no |
|
|
Call Number |
IAM @ iam @ MRT2005 |
Serial |
1608 |
|
Permanent link to this record |
|
|
|
|
Author |
Fernando Vilariño; Enric Marti |

|
|
Title |
New didactic techniques in the EHES applying mobile technologies |
Type |
Miscellaneous |
|
Year |
2008 |
Publication  |
Agencia de Gestio d´Ajuts Universitaris I de Recerca (AGAUR), Generalitat de Catalunya |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
Agencia de Gestió d’Ajuts Universitaris I de Recerca (AGAUR), Generalitat de Catalunya |
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
Agencia de Gestio d´Ajuts Universitaris I de Recerca (AGAUR), Generalitat de Catalunya |
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;IAM;MV;SIAI |
Approved |
no |
|
|
Call Number |
IAM @ iam @ VIM2008 |
Serial |
1664 |
|
Permanent link to this record |
|
|
|
|
Author |
Maurizio Mencuccini; Jordi Martinez-Vilalta; Josep Piñol; Lasse Loepfe; Mireia Burnat ; Xavier Alvarez; Juan Camacho; Debora Gil |


|
|
Title |
A quantitative and statistically robust method for the determination of xylem conduit spatial distribution |
Type |
Journal Article |
|
Year |
2010 |
Publication  |
American Journal of Botany |
Abbreviated Journal |
AJB |
|
|
Volume |
97 |
Issue |
8 |
Pages |
1247-1259 |
|
|
Keywords |
Geyer; hydraulic conductivity; point pattern analysis; Ripley; Spatstat; vessel clusters; xylem anatomy; xylem network |
|
|
Abstract |
Premise of the study: Because of their limited length, xylem conduits need to connect to each other to maintain water transport from roots to leaves. Conduit spatial distribution in a cross section plays an important role in aiding this connectivity. While indices of conduit spatial distribution already exist, they are not well defined statistically. * Methods: We used point pattern analysis to derive new spatial indices. One hundred and five cross-sectional images from different species were transformed into binary images. The resulting point patterns, based on the locations of the conduit centers-of-area, were analyzed to determine whether they departed from randomness. Conduit distribution was then modeled using a spatially explicit stochastic model. * Key results: The presence of conduit randomness, uniformity, or aggregation depended on the spatial scale of the analysis. The large majority of the images showed patterns significantly different from randomness at least at one spatial scale. A strong phylogenetic signal was detected in the spatial variables. * Conclusions: Conduit spatial arrangement has been largely conserved during evolution, especially at small spatial scales. Species in which conduits were aggregated in clusters had a lower conduit density compared to those with uniform distribution. Statistically sound spatial indices must be employed as an aid in the characterization of distributional patterns across species and in models of xylem water transport. Point pattern analysis is a very useful tool in identifying spatial patterns. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; |
Approved |
no |
|
|
Call Number |
IAM @ iam @ MMG2010 |
Serial |
1623 |
|
Permanent link to this record |
|
|
|
|
Author |
Sonia Baeza; R.Domingo; M.Salcedo; G.Moragas; J.Deportos; I.Garcia Olive; Carles Sanchez; Debora Gil; Antoni Rosell |

|
|
Title |
Artificial Intelligence to Optimize Pulmonary Embolism Diagnosis During Covid-19 Pandemic by Perfusion SPECT/CT, a Pilot Study |
Type |
Journal Article |
|
Year |
2021 |
Publication  |
American Journal of Respiratory and Critical Care Medicine |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BDS2021 |
Serial |
3591 |
|
Permanent link to this record |
|
|
|
|
Author |
Guillermo Torres; Sonia Baeza; Carles Sanchez; Ignasi Guasch; Antoni Rosell; Debora Gil |

|
|
Title |
An Intelligent Radiomic Approach for Lung Cancer Screening |
Type |
Journal Article |
|
Year |
2022 |
Publication  |
Applied Sciences |
Abbreviated Journal |
APPLSCI |
|
|
Volume |
12 |
Issue |
3 |
Pages |
1568 |
|
|
Keywords |
Lung cancer; Early diagnosis; Screening; Neural networks; Image embedding; Architecture optimization |
|
|
Abstract |
The efficiency of lung cancer screening for reducing mortality is hindered by the high rate of false positives. Artificial intelligence applied to radiomics could help to early discard benign cases from the analysis of CT scans. The available amount of data and the fact that benign cases are a minority, constitutes a main challenge for the successful use of state of the art methods (like deep learning), which can be biased, over-fitted and lack of clinical reproducibility. We present an hybrid approach combining the potential of radiomic features to characterize nodules in CT scans and the generalization of the feed forward networks. In order to obtain maximal reproducibility with minimal training data, we propose an embedding of nodules based on the statistical significance of radiomic features for malignancy detection. This representation space of lesions is the input to a feed
forward network, which architecture and hyperparameters are optimized using own-defined metrics of the diagnostic power of the whole system. Results of the best model on an independent set of patients achieve 100% of sensitivity and 83% of specificity (AUC = 0.94) for malignancy detection. |
|
|
Address |
Jan 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TBS2022 |
Serial |
3699 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Jose Elias Yauri; Pau Folch; Miquel Angel Piera; Debora Gil |

|
|
Title |
Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals |
Type |
Journal Article |
|
Year |
2022 |
Publication  |
Applied Sciences |
Abbreviated Journal |
APPLSCI |
|
|
Volume |
12 |
Issue |
5 |
Pages |
2298 |
|
|
Keywords |
Cognitive states; Mental workload; EEG analysis; Neural networks; Multimodal data fusion |
|
|
Abstract |
The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment. |
|
|
Address |
February 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; ADAS; 600.139; 600.145; 600.118 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HYF2022 |
Serial |
3720 |
|
Permanent link to this record |
|
|
|
|
Author |
Katerine Diaz; Aura Hernandez-Sabate; Antonio Lopez |


|
|
Title |
A reduced feature set for driver head pose estimation |
Type |
Journal Article |
|
Year |
2016 |
Publication  |
Applied Soft Computing |
Abbreviated Journal |
ASOC |
|
|
Volume |
45 |
Issue |
|
Pages |
98-107 |
|
|
Keywords |
Head pose estimation; driving performance evaluation; subspace based methods; linear regression |
|
|
Abstract |
Evaluation of driving performance is of utmost importance in order to reduce road accident rate. Since driving ability includes visual-spatial and operational attention, among others, head pose estimation of the driver is a crucial indicator of driving performance. This paper proposes a new automatic method for coarse and fine head's yaw angle estimation of the driver. We rely on a set of geometric features computed from just three representative facial keypoints, namely the center of the eyes and the nose tip. With these geometric features, our method combines two manifold embedding methods and a linear regression one. In addition, the method has a confidence mechanism to decide if the classification of a sample is not reliable. The approach has been tested using the CMU-PIE dataset and our own driver dataset. Despite the very few facial keypoints required, the results are comparable to the state-of-the-art techniques. The low computational cost of the method and its robustness makes feasible to integrate it in massive consume devices as a real time application. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ADAS; 600.085; 600.076;;IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ DHL2016 |
Serial |
2760 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Elias Yauri; Aura Hernandez-Sabate; Pau Folch; Debora Gil |

|
|
Title |
Mental Workload Detection Based on EEG Analysis |
Type |
Conference Article |
|
Year |
2021 |
Publication  |
Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. |
Abbreviated Journal |
|
|
|
Volume |
339 |
Issue |
|
Pages |
268-277 |
|
|
Keywords |
Cognitive states; Mental workload; EEG analysis; Neural Networks. |
|
|
Abstract |
The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation. |
|
|
Address |
Virtual; October 20-22 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CCIA |
|
|
Notes |
IAM; 600.139; 600.118; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3723 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Cano; Alvaro Caravaca; Debora Gil; Eva Musulen |


|
|
Title |
Diagnosis of Helicobacter pylori using AutoEncoders for the Detection of Anomalous Staining Patterns in Immunohistochemistry Images |
Type |
Miscellaneous |
|
Year |
2023 |
Publication  |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
107241 |
|
|
Keywords |
|
|
|
Abstract |
This work addresses the detection of Helicobacter pylori a bacterium classified since 1994 as class 1 carcinogen to humans. By its highest specificity and sensitivity, the preferred diagnosis technique is the analysis of histological images with immunohistochemical staining, a process in which certain stained antibodies bind to antigens of the biological element of interest. This analysis is a time demanding task, which is currently done by an expert pathologist that visually inspects the digitized samples.
We propose to use autoencoders to learn latent patterns of healthy tissue and detect H. pylori as an anomaly in image staining. Unlike existing classification approaches, an autoencoder is able to learn patterns in an unsupervised manner (without the need of image annotations) with high performance. In particular, our model has an overall 91% of accuracy with 86\% sensitivity, 96% specificity and 0.97 AUC in the detection of H. pylori. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ CCG2023 |
Serial |
3855 |
|
Permanent link to this record |