toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Jose Elias Yauri; M. Lagos; H. Vega-Huerta; P. de-la-Cruz; G.L.E Maquen-Niño; E. Condor-Tinoco edit  doi
openurl 
  Title Detection of Epileptic Seizures Based-on Channel Fusion and Transformer Network in EEG Recordings Type Journal Article
  Year 2023 Publication International Journal of Advanced Computer Science and Applications Abbreviated Journal IJACSA  
  Volume 14 Issue 5 Pages 1067-1074  
  Keywords Epilepsy; epilepsy detection; EEG; EEG channel fusion; convolutional neural network; self-attention  
  Abstract According to the World Health Organization, epilepsy affects more than 50 million people in the world, and specifically, 80% of them live in developing countries. Therefore, epilepsy has become among the major public issue for many governments and deserves to be engaged. Epilepsy is characterized by uncontrollable seizures in the subject due to a sudden abnormal functionality of the brain. Recurrence of epilepsy attacks change people’s lives and interferes with their daily activities. Although epilepsy has no cure, it could be mitigated with an appropriated diagnosis and medication. Usually, epilepsy diagnosis is based on the analysis of an electroencephalogram (EEG) of the patient. However, the process of searching for seizure patterns in a multichannel EEG recording is a visual demanding and time consuming task, even for experienced neurologists. Despite the recent progress in automatic recognition of epilepsy, the multichannel nature of EEG recordings still challenges current methods. In this work, a new method to detect epilepsy in multichannel EEG recordings is proposed. First, the method uses convolutions to perform channel fusion, and next, a self-attention network extracts temporal features to classify between interictal and ictal epilepsy states. The method was validated in the public CHB-MIT dataset using the k-fold cross-validation and achieved 99.74% of specificity and 99.15% of sensitivity, surpassing current approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ Serial 3856  
Permanent link to this record
 

 
Author Guillermo Torres; Jan Rodríguez Dueñas; Sonia Baeza; Antoni Rosell; Carles Sanchez; Debora Gil edit   pdf
url  openurl
  Title Prediction of Malignancy in Lung Cancer using several strategies for the fusion of Multi-Channel Pyradiomics Images Type Conference Article
  Year 2023 Publication 7th Workshop on Digital Image Processing for Medical and Automotive Industry in the framework of SYNASC 2023 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This study shows the generation process and the subsequent study of the representation space obtained by extracting GLCM texture features from computer-aided tomography (CT) scans of pulmonary nodules (PN). For this, data from 92 patients from the Germans Trias i Pujol University Hospital were used. The workflow focuses on feature extraction using Pyradiomics and the VGG16 Convolutional Neural Network (CNN). The aim of the study is to assess whether the data obtained have a positive impact on the diagnosis of lung cancer (LC). To design a machine learning (ML) model training method that allows generalization, we train SVM and neural network (NN) models, evaluating diagnosis performance using metrics defined at slice and nodule level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference DIPMAI  
  Notes IAM Approved no  
  Call Number Admin @ si @ TRB2023 Serial 3926  
Permanent link to this record
 

 
Author Guillermo Torres; Debora Gil; Antoni Rosell; S. Mena; Carles Sanchez edit  openurl
  Title Virtual Radiomics Biopsy for the Histological Diagnosis of Pulmonary Nodules Type Conference Article
  Year 2023 Publication 37th International Congress and Exhibition is organized by Computer Assisted Radiology and Surgery Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pòster  
  Address Munich; Germany; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference CARS  
  Notes IAM Approved no  
  Call Number Admin @ si @ TGR2023a Serial 3950  
Permanent link to this record
 

 
Author Sonia Baeza; Debora Gil; Carles Sanchez; Guillermo Torres; Ignasi Garcia Olive; Ignasi Guasch; Samuel Garcia Reina; Felipe Andreo; Jose Luis Mate; Jose Luis Vercher; Antonio Rosell edit  openurl
  Title Biopsia virtual radiomica para el diagnóstico histológico de nódulos pulmonares – Resultados intermedios del proyecto Radiolung Type Conference Article
  Year 2023 Publication SEPAR Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pòster  
  Address Granada; Spain; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference SEPAR  
  Notes IAM Approved no  
  Call Number Admin @ si @ BGS2023 Serial 3951  
Permanent link to this record
 

 
Author Debora Gil; Guillermo Torres; Carles Sanchez edit  openurl
  Title Transforming radiomic features into radiological words Type Conference Article
  Year 2023 Publication IEEE International Symposium on Biomedical Imaging Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pòster  
  Address Cartagena de Indias; Colombia; April 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference ISBI  
  Notes IAM Approved no  
  Call Number Admin @ si @ GTS2023 Serial 3952  
Permanent link to this record
 

 
Author Pau Cano; Debora Gil; Eva Musulen edit  openurl
  Title Towards automatic detection of helicobacter pylori in histological samples of gastric tissue Type Conference Article
  Year 2023 Publication IEEE International Symposium on Biomedical Imaging Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Cartagena de Indias; Colombia; April 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference ISBI  
  Notes IAM Approved no  
  Call Number Admin @ si @ CGM2023 Serial 3953  
Permanent link to this record
 

 
Author Guillermo Torres; Debora Gil; Antonio Rosell; Sonia Baeza; Carles Sanchez edit  openurl
  Title A radiomic biopsy for virtual histology of pulmonary nodules Type Conference Article
  Year 2023 Publication IEEE International Symposium on Biomedical Imaging Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pòster  
  Address Cartagena de Indias; Colombia; April 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference ISBI  
  Notes IAM Approved no  
  Call Number Admin @ si @ TGR2023b Serial 3954  
Permanent link to this record
 

 
Author Jose Elias Yauri edit  openurl
  Title Deep Learning Based Data Fusion Approaches for the Assessment of Cognitive States on EEG Signals Type Book Whole
  Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract For millennia, the study of the couple brain-mind has fascinated the humanity in order to understand the complex nature of cognitive states. A cognitive state is the state of the mind at a specific time and involves cognition activities to acquire and process information for making a decision, solving a problem, or achieving a goal.
While normal cognitive states assist in the successful accomplishment of tasks; on the contrary, abnormal states of the mind can lead to task failures due to a reduced cognition capability. In this thesis, we focus on the assessment of cognitive states by means of the analysis of ElectroEncephaloGrams (EEG) signals using deep learning methods. EEG records the electrical activity of the brain using a set of electrodes placed on the scalp that output a set of spatiotemporal signals that are expected to be correlated to a specific mental process.
From the point of view of artificial intelligence, any method for the assessment of cognitive states using EEG signals as input should face several challenges. On the one hand, one should determine which is the most suitable approach for the optimal combination of the multiple signals recorded by EEG electrodes. On the other hand, one should have a protocol for the collection of good quality unambiguous annotated data, and an experimental design for the assessment of the generalization and transfer of models. In order to tackle them, first, we propose several convolutional neural architectures to perform data fusion of the signals recorded by EEG electrodes, at raw signal and feature levels. Four channel fusion methods, easy to incorporate into any neural network architecture, are proposed and assessed. Second, we present a method to create an unambiguous dataset for the prediction of cognitive mental workload using serious games and an Airbus-320 flight simulator. Third, we present a validation protocol that takes into account the levels of generalization of models based on the source and amount of test data.
Finally, the approaches for the assessment of cognitive states are applied to two use cases of high social impact: the assessment of mental workload for personalized support systems in the cockpit and the detection of epileptic seizures. The results obtained from the first use case show the feasibility of task transfer of models trained to detect workload in serious games to real flight scenarios. The results from the second use case show the generalization capability of our EEG channel fusion methods at k-fold cross-validation, patient-specific, and population levels.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Aura Hernandez;Debora Gil  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ Yau2023 Serial 3962  
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Mireia Brunat;Steven Jansen; Jordi Martinez-Vilalta edit   pdf
doi  openurl
  Title Structure-preserving smoothing of biomedical images Type Journal Article
  Year 2011 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 44 Issue 9 Pages 1842-1851  
  Keywords Non-linear smoothing; Differential geometry; Anatomical structures; segmentation; Cardiac magnetic resonance; Computerized tomography  
  Abstract Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes IAM; ADAS Approved no  
  Call Number IAM @ iam @ GHB2011 Serial 1526  
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo edit  doi
isbn  openurl
  Title Mathematical modeling of G protein-coupled receptor function: What can we learn from empirical and mechanistic models? Type Book Chapter
  Year 2014 Publication G Protein-Coupled Receptors – Modeling and Simulation Advances in Experimental Medicine and Biology Abbreviated Journal  
  Volume 796 Issue 3 Pages 159-181  
  Keywords β-arrestin; biased agonism; curve fitting; empirical modeling; evolutionary algorithm; functional selectivity; G protein; GPCR; Hill coefficient; intrinsic efficacy; inverse agonism; mathematical modeling; mechanistic modeling; operational model; parameter optimization; receptor dimer; receptor oligomerization; receptor constitutive activity; signal transduction; two-state model  
  Abstract Empirical and mechanistic models differ in their approaches to the analysis of pharmacological effect. Whereas the parameters of the former are not physical constants those of the latter embody the nature, often complex, of biology. Empirical models are exclusively used for curve fitting, merely to characterize the shape of the E/[A] curves. Mechanistic models, on the contrary, enable the examination of mechanistic hypotheses by parameter simulation. Regretfully, the many parameters that mechanistic models may include can represent a great difficulty for curve fitting, representing, thus, a challenge for computational method development. In the present study some empirical and mechanistic models are shown and the connections, which may appear in a number of cases between them, are analyzed from the curves they yield. It may be concluded that systematic and careful curve shape analysis can be extremely useful for the understanding of receptor function, ligand classification and drug discovery, thus providing a common language for the communication between pharmacologists and medicinal chemists.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0065-2598 ISBN 978-94-007-7422-3 Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number IAM @ iam @ RGG2014 Serial 2197  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: