|
Records |
Links |
|
Author |
Patricia Marquez; Debora Gil ; Aura Hernandez-Sabate |


|
|
Title |
Error Analysis for Lucas-Kanade Based Schemes |
Type |
Conference Article |
|
Year |
2012 |
Publication |
9th International Conference on Image Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
7324 |
Issue |
I |
Pages |
184-191 |
|
|
Keywords |
Optical flow, Confidence measure, Lucas-Kanade, Cardiac Magnetic Resonance |
|
|
Abstract  |
Optical flow is a valuable tool for motion analysis in medical imaging sequences. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in medical sequences. This paper presents an error analysis of Lucas-Kanade schemes in terms of intrinsic design errors and numerical stability of the algorithm. Our analysis provides a confidence measure that is naturally correlated to the accuracy of the flow field. Our experiments show the higher predictive value of our confidence measure compared to existing measures. |
|
|
Address |
Aveiro, Portugal |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Verlag Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
english |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
Campilho, Aurélio and Kamel, Mohamed |
Series Title |
Lecture Notes in Computer Science |
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-31294-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICIAR |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
IAM @ iam @ MGH2012a |
Serial |
1899 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Ramos Terrades; Albert Berenguel; Debora Gil |


|
|
Title |
A Flexible Outlier Detector Based on a Topology Given by Graph Communities |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Big Data Research |
Abbreviated Journal |
BDR |
|
|
Volume |
29 |
Issue |
|
Pages |
100332 |
|
|
Keywords |
Classification algorithms; Detection algorithms; Description of feature space local structure; Graph communities; Machine learning algorithms; Outlier detectors |
|
|
Abstract  |
Outlier detection is essential for optimal performance of machine learning methods and statistical predictive models. Their detection is especially determinant in small sample size unbalanced problems, since in such settings outliers become highly influential and significantly bias models. This particular experimental settings are usual in medical applications, like diagnosis of rare pathologies, outcome of experimental personalized treatments or pandemic emergencies. In contrast to population-based methods, neighborhood based local approaches compute an outlier score from the neighbors of each sample, are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. A main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters, like the number of neighbors.
This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world and synthetic data sets show that our approach outperforms, both, local and global strategies in multi and single view settings. |
|
|
Address |
August 28, 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; IAM; 600.140; 600.121; 600.139; 600.145; 600.159 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RBG2022a |
Serial |
3718 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Ramos Terrades; Albert Berenguel; Debora Gil |


|
|
Title |
A flexible outlier detector based on a topology given by graph communities |
Type |
Miscellaneous |
|
Year |
2020 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
Outlier, or anomaly, detection is essential for optimal performance of machine learning methods and statistical predictive models. It is not just a technical step in a data cleaning process but a key topic in many fields such as fraudulent document detection, in medical applications and assisted diagnosis systems or detecting security threats. In contrast to population-based methods, neighborhood based local approaches are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. However, a main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters. This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world data sets show that our approach overall outperforms, both, local and global strategies in multi and single view settings. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; DAG; 600.139; 600.145; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RBG2020 |
Serial |
3475 |
|
Permanent link to this record |
|
|
|
|
Author |
Guillermo Torres; Debora Gil; Antoni Rosell; S. Mena; Carles Sanchez |

|
|
Title |
Virtual Radiomics Biopsy for the Histological Diagnosis of Pulmonary Nodules |
Type |
Conference Article |
|
Year |
2023 |
Publication |
37th International Congress and Exhibition is organized by Computer Assisted Radiology and Surgery |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
Pòster |
|
|
Address |
Munich; Germany; June 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CARS |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ TGR2023a |
Serial |
3950 |
|
Permanent link to this record |
|
|
|
|
Author |
Sonia Baeza; Debora Gil; Carles Sanchez; Guillermo Torres; Ignasi Garcia Olive; Ignasi Guasch; Samuel Garcia Reina; Felipe Andreo; Jose Luis Mate; Jose Luis Vercher; Antonio Rosell |

|
|
Title |
Biopsia virtual radiomica para el diagnóstico histológico de nódulos pulmonares – Resultados intermedios del proyecto Radiolung |
Type |
Conference Article |
|
Year |
2023 |
Publication |
SEPAR |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
Pòster |
|
|
Address |
Granada; Spain; June 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SEPAR |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGS2023 |
Serial |
3951 |
|
Permanent link to this record |
|
|
|
|
Author |
Debora Gil; Guillermo Torres; Carles Sanchez |

|
|
Title |
Transforming radiomic features into radiological words |
Type |
Conference Article |
|
Year |
2023 |
Publication |
IEEE International Symposium on Biomedical Imaging |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
Pòster |
|
|
Address |
Cartagena de Indias; Colombia; April 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ISBI |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ GTS2023 |
Serial |
3952 |
|
Permanent link to this record |
|
|
|
|
Author |
Guillermo Torres; Debora Gil; Antonio Rosell; Sonia Baeza; Carles Sanchez |

|
|
Title |
A radiomic biopsy for virtual histology of pulmonary nodules |
Type |
Conference Article |
|
Year |
2023 |
Publication |
IEEE International Symposium on Biomedical Imaging |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract  |
Pòster |
|
|
Address |
Cartagena de Indias; Colombia; April 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ISBI |
|
|
Notes |
IAM |
Approved |
no |
|
|
Call Number |
Admin @ si @ TGR2023b |
Serial |
3954 |
|
Permanent link to this record |
|
|
|
|
Author |
Saad Minhas; Aura Hernandez-Sabate; Shoaib Ehsan; Klaus McDonald Maier |

|
|
Title |
Effects of Non-Driving Related Tasks during Self-Driving mode |
Type |
Journal Article |
|
Year |
2022 |
Publication |
IEEE Transactions on Intelligent Transportation Systems |
Abbreviated Journal |
TITS |
|
|
Volume |
23 |
Issue |
2 |
Pages |
1391-1399 |
|
|
Keywords |
|
|
|
Abstract  |
Perception reaction time and mental workload have proven to be crucial in manual driving. Moreover, in highly automated cars, where most of the research is focusing on Level 4 Autonomous driving, take-over performance is also a key factor when taking road safety into account. This study aims to investigate how the immersion in non-driving related tasks affects the take-over performance of drivers in given scenarios. The paper also highlights the use of virtual simulators to gather efficient data that can be crucial in easing the transition between manual and autonomous driving scenarios. The use of Computer Aided Simulations is of absolute importance in this day and age since the automotive industry is rapidly moving towards Autonomous technology. An experiment comprising of 40 subjects was performed to examine the reaction times of driver and the influence of other variables in the success of take-over performance in highly automated driving under different circumstances within a highway virtual environment. The results reflect the relationship between reaction times under different scenarios that the drivers might face under the circumstances stated above as well as the importance of variables such as velocity in the success on regaining car control after automated driving. The implications of the results acquired are important for understanding the criteria needed for designing Human Machine Interfaces specifically aimed towards automated driving conditions. Understanding the need to keep drivers in the loop during automation, whilst allowing drivers to safely engage in other non-driving related tasks is an important research area which can be aided by the proposed study. |
|
|
Address |
Feb. 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
IAM; 600.139; 600.145 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MHE2022 |
Serial |
3468 |
|
Permanent link to this record |
|
|
|
|
Author |
Aura Hernandez-Sabate; Lluis Albarracin; Daniel Calvo; Nuria Gorgorio |

|
|
Title |
EyeMath: Identifying Mathematics Problem Solving Processes in a RTS Video Game |
Type |
Conference Article |
|
Year |
2016 |
Publication |
5th International Conference Games and Learning Alliance |
Abbreviated Journal |
|
|
|
Volume |
10056 |
Issue |
|
Pages |
50-59 |
|
|
Keywords |
Simulation environment; Automated Driving; Driver-Vehicle interaction |
|
|
Abstract  |
Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GALA |
|
|
Notes |
ADAS;IAM; |
Approved |
no |
|
|
Call Number |
HAC2016 |
Serial |
2864 |
|
Permanent link to this record |
|
|
|
|
Author |
Saad Minhas; Aura Hernandez-Sabate; Shoaib Ehsan; Katerine Diaz; Ales Leonardis; Antonio Lopez; Klaus McDonald Maier |

|
|
Title |
LEE: A photorealistic Virtual Environment for Assessing Driver-Vehicle Interactions in Self-Driving Mode |
Type |
Conference Article |
|
Year |
2016 |
Publication |
14th European Conference on Computer Vision Workshops |
Abbreviated Journal |
|
|
|
Volume |
9915 |
Issue |
|
Pages |
894-900 |
|
|
Keywords |
Simulation environment; Automated Driving; Driver-Vehicle interaction |
|
|
Abstract  |
Photorealistic virtual environments are crucial for developing and testing automated driving systems in a safe way during trials. As commercially available simulators are expensive and bulky, this paper presents a low-cost, extendable, and easy-to-use (LEE) virtual environment with the aim to highlight its utility for level 3 driving automation. In particular, an experiment is performed using the presented simulator to explore the influence of different variables regarding control transfer of the car after the system was driving autonomously in a highway scenario. The results show that the speed of the car at the time when the system needs to transfer the control to the human driver is critical. |
|
|
Address |
Amsterdam; The Netherlands; October 2016 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECCVW |
|
|
Notes |
ADAS;IAM; 600.085; 600.076 |
Approved |
no |
|
|
Call Number |
MHE2016 |
Serial |
2865 |
|
Permanent link to this record |