toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Joel Barajas; Jaume Garcia; Francesc Carreras; Sandra Pujades; Petia Radeva edit   pdf
url  isbn
openurl 
  Title Angle Images Using Gabor Filters in Cardiac Tagged MRI Type Conference Article
  Year 2005 Publication Proceeding of the 2005 conference on Artificial Intelligence Research and Development Abbreviated Journal  
  Volume Issue Pages (down) 107-114  
  Keywords Angle Images, Gabor Filters, Harp, Tagged Mri  
  Abstract Tagged Magnetic Resonance Imaging (MRI) is a non-invasive technique used to examine cardiac deformation in vivo. An Angle Image is a representation of a Tagged MRI which recovers the relative position of the tissue respect to the distorted tags. Thus cardiac deformation can be estimated. This paper describes a new approach to generate Angle Images using a bank of Gabor filters in short axis cardiac Tagged MRI. Our method improves the Angle Images obtained by global techniques, like HARP, with a local frequency analysis. We propose to use the phase response of a combination of a Gabor filters bank, and use it to find a more precise deformation of the left ventricle. We demonstrate the accuracy of our method over HARP by several experimental results.  
  Address Amsterdam; The Netherlands  
  Corporate Author Thesis  
  Publisher IOS Press Place of Publication Amsterdam, The Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 1-58603-560-6 Medium  
  Area Expedition Conference CAIRD  
  Notes IAM;MILAB Approved no  
  Call Number BCNPCL @ bcnpcl @ BGC2005; IAM @ iam Serial 595  
Permanent link to this record
 

 
Author Jaume Garcia; Debora Gil; Francesc Carreras; Sandra Pujades; R.Leta; Xavier Alomar; Guillem Pons-LLados edit   pdf
url  openurl
  Title Patrons de Normalitat Regional per la Valoració de la Funció del Ventricle Esquerre Type Conference Article
  Year 2008 Publication XX Congrés de la Societat Catalana de Cardiologia Abbreviated Journal  
  Volume Issue Pages (down) 60  
  Keywords  
  Abstract Les malalties cardiovasculars afecten les propietats contràctils de la banda ventricular i provoquen una variació de la funció del Ventricle Esquerre (VE) . Només els indicadors locals (strains, la deformació del teixit) són capaços de detectar anomalies en territoris específics del VE . Patrons de normalitat regionals d’aquests paràmetres serien d’utilitat a l’hora de valorar-ne la funció .
Presentem un Domini Paramètric Normalitzat (DPN) que permet comparar dades de diferents pacients i definir Patrons de Normalitat Regional (PNR)
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Barcelona Editor  
  Language catalan Summary Language catalan Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GGC2008b Serial 1503  
Permanent link to this record
 

 
Author Debora Gil; Jaume Garcia; Ruth Aris; Guillaume Houzeaux; Manuel Vazquez edit   pdf
openurl 
  Title A Riemmanian approach to cardiac fiber architecture modelling Type Conference Article
  Year 2009 Publication 1st International Conference on Mathematical & Computational Biomedical Engineering Abbreviated Journal  
  Volume Issue Pages (down) 59-62  
  Keywords cardiac fiber architecture; diffusion tensor magnetic resonance imaging; differential (Rie- mannian) geometry.  
  Abstract There is general consensus that myocardial fiber architecture should be modelled in order to fully understand the electromechanical properties of the Left Ventricle (LV). Diffusion Tensor magnetic resonance Imaging (DTI) is the reference image modality for rapid measurement of fiber orientations by means of the tensor principal eigenvectors. In this work, we present a mathematical framework for across subject comparison of the local geometry of the LV anatomy including the fiber architecture from the statistical analysis of DTI studies. We use concepts of differential geometry for defining a parametric domain suitable for statistical analysis of a low number of samples. We use Riemannian metrics to define a consistent computation of DTI principal eigenvector modes of variation. Our framework has been applied to build an atlas of the LV fiber architecture from 7 DTI normal canine hearts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Swansea (UK) Editor Nithiarasu, R.L.R.V.L.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CMBE  
  Notes IAM Approved no  
  Call Number IAM @ iam @ FGA2009 Serial 1520  
Permanent link to this record
 

 
Author Jaume Garcia; Joel Barajas; Francesc Carreras; Sandra Pujades; Petia Radeva edit   pdf
doi  isbn
openurl 
  Title An intuitive validation technique to compare local versus global tagged MRI analysis Type Conference Article
  Year 2005 Publication Computers In Cardiology Abbreviated Journal  
  Volume 32 Issue Pages (down) 29–32  
  Keywords  
  Abstract Myocardium appears as a uniform tissue that seen in convectional Magnetic Resonance Images (MRI) shows just the contractile part of its movement. MR Tagging is a unique imaging technique that prints a grid over the tissue which moves according to the underlying movement of the myocardium revealing the true deformation of the cardiac muscle. Optical flow techniques based on spectral information estimate tissue displacement by analyzing information encoded in the phase maps which can be obtained using, local (Gabor) and global (HARP) methods. In this paper we compare both in synthetic and real Tagged MR sequences. We conclude that local method is slightly more accurate than the global one. On the other hand, global method is more efficient as it is much faster and less parameters have to be taken into account  
  Address Lyon (France)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-7803-9337-6 Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GBC2005 Serial 639  
Permanent link to this record
 

 
Author Ferran Poveda; Jaume Garcia; Enric Marti; Debora Gil edit   pdf
openurl 
  Title Validation of the myocardial architecture in DT-MRI tractography Type Conference Article
  Year 2010 Publication Medical Image Computing in Catalunya: Graduate Student Workshop Abbreviated Journal  
  Volume Issue Pages (down) 29-30  
  Keywords  
  Abstract Deep understanding of myocardial structure may help to link form and funcion of the heart unraveling crucial knowledge for medical and surgical clinical procedures and studies. In this work we introduce two visualization techniques based on DT-MRI streamlining able to decipher interesting properties of the architectural organization of the heart.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Girona (Spain) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAT  
  Notes IAM Approved no  
  Call Number IAM @ iam @ PGM2010 Serial 1626  
Permanent link to this record
 

 
Author Jaume Garcia; Francesc Carreras; Sandra Pujades; Debora Gil edit   pdf
doi  openurl
  Title Regional motion patterns for the Left Ventricle function assessment Type Conference Article
  Year 2008 Publication Proc. 19th Int. Conf. Pattern Recognition ICPR 2008 Abbreviated Journal  
  Volume Issue Pages (down) 1-4  
  Keywords  
  Abstract Regional scores (e.g. strain, perfusion) of the Left Ventricle (LV) functionality are playing an increasing role in the diagnosis of cardiac diseases. A main limitation is the lack of normality models for complementary scores oriented to assessment of the LV integrity. This paper introduces an original framework based on a parametrization of the LV domain, which allows comparison across subjects of local physiological measures of different nature. We compute regional normality patterns in a feature space characterizing the LV function. We show the consistency of the model for the regional motion on healthy and hypokinetic pathological cases  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GCP2008 Serial 1510  
Permanent link to this record
 

 
Author Debora Gil; Jaume Garcia; Mariano Vazquez; Ruth Aris; Guilleaume Houzeaux edit   pdf
isbn  openurl
  Title Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function Type Conference Article
  Year 2008 Publication 8th World Congress on Computational Mechanichs (WCCM8) Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords Left Ventricle, Electromechanical Models, Image Processing, Magnetic Resonance.  
  Abstract Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models [1] consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality [2]. In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp [3].
We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment.
The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted.
The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have
Figure 1: Scheme for the Left Ventricle Patient-Sensitive Model.
computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.
 
  Address Venice; Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9788496736559 Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ GGV2008b Serial 993  
Permanent link to this record
 

 
Author Debora Gil; Jaume Garcia; Manuel Vazquez; Ruth Aris; Guillaume Houzeaux edit   pdf
url  openurl
  Title Patient-Sensitive Anatomic and Functional 3D Model of the Left Ventricle Function Type Conference Article
  Year 2008 Publication 8th World Congress on Computational Mechanichs (WCCM8)/5th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008) Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords Left Ventricle; Electromechanical Models; Image Processing; Magnetic Resonance.  
  Abstract Early diagnosis and accurate treatment of Left Ventricle (LV) dysfunction significantly increases the patient survival. Impairment of LV contractility due to cardiovascular diseases is reflected in its motion patterns. Recent advances in medical imaging, such as Magnetic Resonance (MR), have encouraged research on 3D simulation and modelling of the LV dynamics. Most of the existing 3D models consider just the gross anatomy of the LV and restore a truncated ellipse which deforms along the cardiac cycle. The contraction mechanics of any muscle strongly depends on the spatial orientation of its muscular fibers since the motion that the muscle undergoes mainly takes place along the fibers. It follows that such simplified models do not allow evaluation of the heart electro-mechanical function and coupling, which has recently risen as the key point for understanding the LV functionality . In order to thoroughly understand the LV mechanics it is necessary to consider the complete anatomy of the LV given by the orientation of the myocardial fibres in 3D space as described by Torrent Guasp. We propose developing a 3D patient-sensitive model of the LV integrating, for the first time, the ven- tricular band anatomy (fibers orientation), the LV gross anatomy and its functionality. Such model will represent the LV function as a natural consequence of its own ventricular band anatomy. This might be decisive in restoring a proper LV contraction in patients undergoing pace marker treatment. The LV function is defined as soon as the propagation of the contractile electromechanical pulse has been modelled. In our experiments we have used the wave equation for the propagation of the electric pulse. The electromechanical wave moves on the myocardial surface and should have a conductivity tensor oriented along the muscular fibers. Thus, whatever mathematical model for electric pulse propa- gation [4] we consider, the complete anatomy of the LV should be extracted. The LV gross anatomy is obtained by processing multi slice MR images recorded for each patient. Information about the myocardial fibers distribution can only be extracted by Diffusion Tensor Imag- ing (DTI), which can not provide in vivo information for each patient. As a first approach, we have computed an average model of fibers from several DTI studies of canine hearts. This rough anatomy is the input for our electro-mechanical propagation model simulating LV dynamics. The average fiber orientation is updated until the simulated LV motion agrees with the experimental evidence provided by the LV motion observed in tagged MR (TMR) sequences. Experimental LV motion is recovered by applying image processing, differential geometry and interpolation techniques to 2D TMR slices [5]. The pipeline in figure 1 outlines the interaction between simulations and experimental data leading to our patient-tailored model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Venezia (Italia) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN B-31470-08 ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGV2008c Serial 1521  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: