toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Debora Gil; Agnes Borras; Manuel Ballester; Francesc Carreras; Ruth Aris; Manuel Vazquez; Enric Marti; Ferran Poveda edit   pdf
url  doi
isbn  openurl
  Title MIOCARDIA: Integrating cardiac function and muscular architecture for a better diagnosis Type Conference Article
  Year 2011 Publication 14th International Symposium on Applied Sciences in Biomedical and Communication Technologies Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract Deep understanding of myocardial structure of the heart would unravel crucial knowledge for clinical and medical procedures. The MIOCARDIA project is a multidisciplinary project in cooperation with l'Hospital de la Santa Creu i de Sant Pau, Clinica la Creu Blanca and Barcelona Supercomputing Center. The ultimate goal of this project is defining a computational model of the myocardium. The model takes into account the deep interrelation between the anatomy and the mechanics of the heart. The paper explains the workflow of the MIOCARDIA project. It also introduces a multiresolution reconstruction technique based on DT-MRI streamlining for simplified global myocardial model generation. Our reconstructions can restore the most complex myocardial structures and provides evidences of a global helical organization.  
  Address Barcelona; Spain  
  Corporate Author Association for Computing Machinery Thesis  
  Publisher Place of Publication Barcelona, Spain Editor Association for Computing Machinery  
  Language english Summary Language english Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-0913-4 Medium  
  Area Expedition Conference ISABEL  
  Notes IAM Approved no  
  Call Number IAM @ iam @ GGB2011 Serial 1691  
Permanent link to this record
 

 
Author Antonio Esteban Lansaque; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit   pdf
openurl 
  Title Stable Airway Center Tracking for Bronchoscopic Navigation Type Conference Article
  Year 2016 Publication 28th Conference of the international Society for Medical Innovation and Technology Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords  
  Abstract Bronchoscopists use X‐ray fluoroscopy to guide bronchoscopes to the lesion to be biopsied without any kind of incisions. Reducing exposure to X‐ray is important for both patients and doctors but alternatives like electromagnetic navigation require specific equipment and increase the cost of the clinical procedure. We propose a guiding system based on the extraction of airway centers from intra‐operative videos. Such anatomical landmarks could be
matched to the airway centerline extracted from a pre‐planned CT to indicate the best path to the lesion. We present an extraction of lumen centers
from intra‐operative videos based on tracking of maximal stable regions of energy maps.
 
  Address Delft; Rotterdam; Leiden; The Netherlands; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SMIT  
  Notes IAM; Approved no  
  Call Number Admin @ si @ LSB2016a Serial 2856  
Permanent link to this record
 

 
Author Antonio Esteban Lansaque; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit   pdf
openurl 
  Title Stable Anatomical Structure Tracking for video-bronchoscopy Navigation Type Conference Article
  Year 2016 Publication 19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshops Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords Lung cancer diagnosis; video-bronchoscopy; airway lumen detection; region tracking  
  Abstract Bronchoscopy allows to examine the patient airways for detection of lesions and sampling of tissues without surgery. A main drawback in lung cancer diagnosis is the diculty to check whether the exploration is following the correct path to the nodule that has to be biopsied. The most extended guidance uses uoroscopy which implies repeated radiation of clinical sta and patients. Alternatives such as virtual bronchoscopy or electromagnetic navigation are very expensive and not completely robust to blood, mocus or deformations as to be extensively used. We propose a method that extracts and tracks stable lumen regions at di erent levels of the bronchial tree. The tracked regions are stored in a tree that encodes the anatomical structure of the scene which can be useful to retrieve the path to the lesion that the clinician should follow to do the biopsy. We present a multi-expert validation of our anatomical landmark extraction in 3 intra-operative ultrathin explorations.  
  Address Athens; Greece; October 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ LSB2016b Serial 2857  
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil edit   pdf
url  openurl
  Title Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy Type Conference Article
  Year 2018 Publication OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis Abbreviated Journal  
  Volume 11041 Issue Pages (down)  
  Keywords Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification  
  Abstract Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems.  
  Address Granada; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes IAM; 600.096; 600.075; 601.323; 600.145 Approved no  
  Call Number Admin @ si @ RSB2018b Serial 3137  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: