2024 |
|
Aura Hernandez-Sabate, Jose Elias Yauri, Pau Folch, Daniel Alvarez, & Debora Gil. (2024). EEG Dataset Collection for Mental Workload Predictions in Flight-Deck Environment . Sensors, 24(4), 1174.
Abstract: High mental workload reduces human performance and the ability to correctly carry out complex tasks. In particular, aircraft pilots enduring high mental workloads are at high risk of failure, even with catastrophic outcomes. Despite progress, there is still a lack of knowledge about the interrelationship between mental workload and brain functionality, and there is still limited data on flight-deck scenarios. Although recent emerging deep-learning (DL) methods using physiological data have presented new ways to find new physiological markers to detect and assess cognitive states, they demand large amounts of properly annotated datasets to achieve good performance. We present a new dataset of electroencephalogram (EEG) recordings specifically collected for the recognition of different levels of mental workload. The data were recorded from three experiments, where participants were induced to different levels of workload through tasks of increasing cognition demand. The first involved playing the N-back test, which combines memory recall with arithmetical skills. The second was playing Heat-the-Chair, a serious game specifically designed to emphasize and monitor subjects under controlled concurrent tasks. The third was flying in an Airbus320 simulator and solving several critical situations. The design of the dataset has been validated on three different levels: (1) correlation of the theoretical difficulty of each scenario to the self-perceived difficulty and performance of subjects; (2) significant difference in EEG temporal patterns across the theoretical difficulties and (3) usefulness for the training and evaluation of AI models.
|
|
2023 |
|
Guillermo Torres, Debora Gil, Antoni Rosell, S. Mena, & Carles Sanchez. (2023)." Virtual Radiomics Biopsy for the Histological Diagnosis of Pulmonary Nodules – Intermediate Results of the RadioLung Project" . International Journal of Computer Assisted Radiology and Surgery, .
|
|
|
Juan Borrego-Carazo, Carles Sanchez, David Castells, Jordi Carrabina, & Debora Gil. (2023). "BronchoPose: an analysis of data and model configuration for vision-based bronchoscopy pose estimation " . Computer Methods and Programs in Biomedicine, 228, 107241.
Abstract: Vision-based bronchoscopy (VB) models require the registration of the virtual lung model with the frames from the video bronchoscopy to provide effective guidance during the biopsy. The registration can be achieved by either tracking the position and orientation of the bronchoscopy camera or by calibrating its deviation from the pose (position and orientation) simulated in the virtual lung model. Recent advances in neural networks and temporal image processing have provided new opportunities for guided bronchoscopy. However, such progress has been hindered by the lack of comparative experimental conditions.
In the present paper, we share a novel synthetic dataset allowing for a fair comparison of methods. Moreover, this paper investigates several neural network architectures for the learning of temporal information at different levels of subject personalization. In order to improve orientation measurement, we also present a standardized comparison framework and a novel metric for camera orientation learning. Results on the dataset show that the proposed metric and architectures, as well as the standardized conditions, provide notable improvements to current state-of-the-art camera pose estimation in video bronchoscopy.
Keywords: Videobronchoscopy guiding; Deep learning; Architecture optimization; Datasets; Standardized evaluation framework; Pose estimation
|
|
2022 |
|
Antoni Rosell, Sonia Baeza, S. Garcia-Reina, JL. Mate, Ignasi Guasch, I. Nogueira, et al. (2022). EP01.05-001 Radiomics to Increase the Effectiveness of Lung Cancer Screening Programs. Radiolung Preliminary Results . Journal of Thoracic Oncology, 17(9), S182.
|
|
|
Antoni Rosell, Sonia Baeza, S. Garcia-Reina, JL. Mate, Ignasi Guasch, I. Nogueira, et al. (2022). "Radiomics to increase the effectiveness of lung cancer screening programs. Radiolung preliminary results. " European Respiratory Journal, 60(66).
|
|
|
Aura Hernandez-Sabate, Jose Elias Yauri, Pau Folch, Miquel Angel Piera, & Debora Gil. (2022). "Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals " . Applied Sciences, 12(5), 2298.
Abstract: The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment.
Keywords: Cognitive states; Mental workload; EEG analysis; Neural networks; Multimodal data fusion
|
|
|
David Castells, Vinh Ngo, Juan Borrego-Carazo, Marc Codina, Carles Sanchez, Debora Gil, et al. (2022). "A Survey of FPGA-Based Vision Systems for Autonomous Cars " . IEEE Access, 10, 132525–132563.
Abstract: On the road to making self-driving cars a reality, academic and industrial researchers are working hard to continue to increase safety while meeting technical and regulatory constraints Understanding the surrounding environment is a fundamental task in self-driving cars. It requires combining complex computer vision algorithms. Although state-of-the-art algorithms achieve good accuracy, their implementations often require powerful computing platforms with high power consumption. In some cases, the processing speed does not meet real-time constraints. FPGA platforms are often used to implement a category of latency-critical algorithms that demand maximum performance and energy efficiency. Since self-driving car computer vision functions fall into this category, one could expect to see a wide adoption of FPGAs in autonomous cars. In this paper, we survey the computer vision FPGA-based works from the literature targeting automotive applications over the last decade. Based on the survey, we identify the strengths and weaknesses of FPGAs in this domain and future research opportunities and challenges.
Keywords: Autonomous automobile; Computer vision; field programmable gate arrays; reconfigurable architectures
|
|
|
Debora Gil, Aura Hernandez-Sabate, Julien Enconniere, Saryani Asmayawati, Pau Folch, Juan Borrego-Carazo, et al. (2022). "E-Pilots: A System to Predict Hard Landing During the Approach Phase of Commercial Flights " . IEEE Access, 10, 7489–7503.
Abstract: More than half of all commercial aircraft operation accidents could have been prevented by executing a go-around. Making timely decision to execute a go-around manoeuvre can potentially reduce overall aviation industry accident rate. In this paper, we describe a cockpit-deployable machine learning system to support flight crew go-around decision-making based on the prediction of a hard landing event.
This work presents a hybrid approach for hard landing prediction that uses features modelling temporal dependencies of aircraft variables as inputs to a neural network. Based on a large dataset of 58177 commercial flights, the results show that our approach has 85% of average sensitivity with 74% of average specificity at the go-around point. It follows that our approach is a cockpit-deployable recommendation system that outperforms existing approaches.
|
|
|
Guillermo Torres, Sonia Baeza, Carles Sanchez, Ignasi Guasch, Antoni Rosell, & Debora Gil. (2022). "An Intelligent Radiomic Approach for Lung Cancer Screening " . Applied Sciences, 12(3), 1568.
Abstract: The efficiency of lung cancer screening for reducing mortality is hindered by the high rate of false positives. Artificial intelligence applied to radiomics could help to early discard benign cases from the analysis of CT scans. The available amount of data and the fact that benign cases are a minority, constitutes a main challenge for the successful use of state of the art methods (like deep learning), which can be biased, over-fitted and lack of clinical reproducibility. We present an hybrid approach combining the potential of radiomic features to characterize nodules in CT scans and the generalization of the feed forward networks. In order to obtain maximal reproducibility with minimal training data, we propose an embedding of nodules based on the statistical significance of radiomic features for malignancy detection. This representation space of lesions is the input to a feed
forward network, which architecture and hyperparameters are optimized using own-defined metrics of the diagnostic power of the whole system. Results of the best model on an independent set of patients achieve 100% of sensitivity and 83% of specificity (AUC = 0.94) for malignancy detection.
Keywords: Lung cancer; Early diagnosis; Screening; Neural networks; Image embedding; Architecture optimization
|
|
|
Juan Borrego-Carazo, Carles Sanchez, David Castells, Jordi Carrabina, & Debora Gil. (2022)." A benchmark for the evaluation of computational methods for bronchoscopic navigation" . International Journal of Computer Assisted Radiology and Surgery, 17(1).
|
|