2023 |
|
Guillermo Torres, Debora Gil, Antoni Rosell, S. Mena, & Carles Sanchez. (2023)." Virtual Radiomics Biopsy for the Histological Diagnosis of Pulmonary Nodules – Intermediate Results of the RadioLung Project" . International Journal of Computer Assisted Radiology and Surgery, .
|
|
|
Juan Borrego-Carazo, Carles Sanchez, David Castells, Jordi Carrabina, & Debora Gil. (2023). "BronchoPose: an analysis of data and model configuration for vision-based bronchoscopy pose estimation " . Computer Methods and Programs in Biomedicine, 228, 107241.
Abstract: Vision-based bronchoscopy (VB) models require the registration of the virtual lung model with the frames from the video bronchoscopy to provide effective guidance during the biopsy. The registration can be achieved by either tracking the position and orientation of the bronchoscopy camera or by calibrating its deviation from the pose (position and orientation) simulated in the virtual lung model. Recent advances in neural networks and temporal image processing have provided new opportunities for guided bronchoscopy. However, such progress has been hindered by the lack of comparative experimental conditions.
In the present paper, we share a novel synthetic dataset allowing for a fair comparison of methods. Moreover, this paper investigates several neural network architectures for the learning of temporal information at different levels of subject personalization. In order to improve orientation measurement, we also present a standardized comparison framework and a novel metric for camera orientation learning. Results on the dataset show that the proposed metric and architectures, as well as the standardized conditions, provide notable improvements to current state-of-the-art camera pose estimation in video bronchoscopy.
Keywords: Videobronchoscopy guiding; Deep learning; Architecture optimization; Datasets; Standardized evaluation framework; Pose estimation
|
|
2022 |
|
Antoni Rosell, Sonia Baeza, S. Garcia-Reina, JL. Mate, Ignasi Guasch, I. Nogueira, et al. (2022). EP01.05-001 Radiomics to Increase the Effectiveness of Lung Cancer Screening Programs. Radiolung Preliminary Results . Journal of Thoracic Oncology, 17(9), S182.
|
|
|
Antoni Rosell, Sonia Baeza, S. Garcia-Reina, JL. Mate, Ignasi Guasch, I. Nogueira, et al. (2022)." Radiomics to increase the effectiveness of lung cancer screening programs. Radiolung preliminary results." European Respiratory Journal, 60(66).
|
|
|
David Castells, Vinh Ngo, Juan Borrego-Carazo, Marc Codina, Carles Sanchez, Debora Gil, et al. (2022). "A Survey of FPGA-Based Vision Systems for Autonomous Cars " . IEEE Access, 10, 132525–132563.
Abstract: On the road to making self-driving cars a reality, academic and industrial researchers are working hard to continue to increase safety while meeting technical and regulatory constraints Understanding the surrounding environment is a fundamental task in self-driving cars. It requires combining complex computer vision algorithms. Although state-of-the-art algorithms achieve good accuracy, their implementations often require powerful computing platforms with high power consumption. In some cases, the processing speed does not meet real-time constraints. FPGA platforms are often used to implement a category of latency-critical algorithms that demand maximum performance and energy efficiency. Since self-driving car computer vision functions fall into this category, one could expect to see a wide adoption of FPGAs in autonomous cars. In this paper, we survey the computer vision FPGA-based works from the literature targeting automotive applications over the last decade. Based on the survey, we identify the strengths and weaknesses of FPGAs in this domain and future research opportunities and challenges.
Keywords: Autonomous automobile; Computer vision; field programmable gate arrays; reconfigurable architectures
|
|
|
Guillermo Torres, Sonia Baeza, Carles Sanchez, Ignasi Guasch, Antoni Rosell, & Debora Gil. (2022). "An Intelligent Radiomic Approach for Lung Cancer Screening " . Applied Sciences, 12(3), 1568.
Abstract: The efficiency of lung cancer screening for reducing mortality is hindered by the high rate of false positives. Artificial intelligence applied to radiomics could help to early discard benign cases from the analysis of CT scans. The available amount of data and the fact that benign cases are a minority, constitutes a main challenge for the successful use of state of the art methods (like deep learning), which can be biased, over-fitted and lack of clinical reproducibility. We present an hybrid approach combining the potential of radiomic features to characterize nodules in CT scans and the generalization of the feed forward networks. In order to obtain maximal reproducibility with minimal training data, we propose an embedding of nodules based on the statistical significance of radiomic features for malignancy detection. This representation space of lesions is the input to a feed
forward network, which architecture and hyperparameters are optimized using own-defined metrics of the diagnostic power of the whole system. Results of the best model on an independent set of patients achieve 100% of sensitivity and 83% of specificity (AUC = 0.94) for malignancy detection.
Keywords: Lung cancer; Early diagnosis; Screening; Neural networks; Image embedding; Architecture optimization
|
|
|
Juan Borrego-Carazo, Carles Sanchez, David Castells, Jordi Carrabina, & Debora Gil. (2022)." A benchmark for the evaluation of computational methods for bronchoscopic navigation" . International Journal of Computer Assisted Radiology and Surgery, 17(1).
|
|
|
Sonia Baeza, Debora Gil, I.Garcia Olive, M.Salcedo, J.Deportos, Carles Sanchez, et al. (2022). "A novel intelligent radiomic analysis of perfusion SPECT/CT images to optimize pulmonary embolism diagnosis in COVID-19 patients " . EJNMMI Physics, 9(1, Article 84), 1–17.
Abstract: Background: COVID-19 infection, especially in cases with pneumonia, is associated with a high rate of pulmonary embolism (PE). In patients with contraindications for CT pulmonary angiography (CTPA) or non-diagnostic CTPA, perfusion single-photon emission computed tomography/computed tomography (Q-SPECT/CT) is a diagnostic alternative. The goal of this study is to develop a radiomic diagnostic system to detect PE based only on the analysis of Q-SPECT/CT scans.
Methods: This radiomic diagnostic system is based on a local analysis of Q-SPECT/CT volumes that includes both CT and Q-SPECT values for each volume point. We present a combined approach that uses radiomic features extracted from each scan as input into a fully connected classifcation neural network that optimizes a weighted crossentropy loss trained to discriminate between three diferent types of image patterns (pixel sample level): healthy lungs (control group), PE and pneumonia. Four types of models using diferent confguration of parameters were tested.
Results: The proposed radiomic diagnostic system was trained on 20 patients (4,927 sets of samples of three types of image patterns) and validated in a group of 39 patients (4,410 sets of samples of three types of image patterns). In the training group, COVID-19 infection corresponded to 45% of the cases and 51.28% in the test group. In the test group, the best model for determining diferent types of image patterns with PE presented a sensitivity, specifcity, positive predictive value and negative predictive value of 75.1%, 98.2%, 88.9% and 95.4%, respectively. The best model for detecting
pneumonia presented a sensitivity, specifcity, positive predictive value and negative predictive value of 94.1%, 93.6%, 85.2% and 97.6%, respectively. The area under the curve (AUC) was 0.92 for PE and 0.91 for pneumonia. When the results obtained at the pixel sample level are aggregated into regions of interest, the sensitivity of the PE increases to 85%, and all metrics improve for pneumonia.
Conclusion: This radiomic diagnostic system was able to identify the diferent lung imaging patterns and is a frst step toward a comprehensive intelligent radiomic system to optimize the diagnosis of PE by Q-SPECT/CT.
|
|
2021 |
|
Sonia Baeza, R.Domingo, M.Salcedo, G.Moragas, J.Deportos, I.Garcia Olive, et al. (2021). Artificial Intelligence to Optimize Pulmonary Embolism Diagnosis During Covid-19 Pandemic by Perfusion SPECT/CT, a Pilot Study . American Journal of Respiratory and Critical Care Medicine, .
|
|
2020 |
|
Debora Gil, Antonio Esteban Lansaque, Agnes Borras, Esmitt Ramirez, & Carles Sanchez. (2020). "Intraoperative Extraction of Airways Anatomy in VideoBronchoscopy " . IEEE Access, 8, 159696–159704.
Abstract: A main bottleneck in bronchoscopic biopsy sampling is to efficiently reach the lesion navigating across bronchial levels. Any guidance system should be able to localize the scope position during the intervention with minimal costs and alteration of clinical protocols. With the final goal of an affordable image-based guidance, this work presents a novel strategy to extract and codify the anatomical structure of bronchi, as well as, the scope navigation path from videobronchoscopy. Experiments using interventional data show that our method accurately identifies the bronchial structure. Meanwhile, experiments using simulated data verify that the extracted navigation path matches the 3D route.
|
|