|
Angel Sappa, Fadi Dornaika, David Geronimo and Antonio Lopez. 2007. Efficient On-Board Stereo Vision Pose Estimation. Computer Aided Systems Theory, Selected paper from.1183–1190. (LNCS.)
Abstract: This paper presents an efficient technique for real time estimation of on-board stereo vision system pose. The whole process is performed in the Euclidean space and consists of two stages. Initially, a compact representation of the original 3D data points is computed. Then, a RANSAC based least squares approach is used for fitting a plane to the 3D road points. Fast RANSAC fitting is obtained by selecting points according to a probability distribution function that takes into account the density of points at a given depth. Finally, stereo camera position
and orientation—pose—is computed relative to the road plane. The proposed technique is intended to be used on driver assistance systems for applications such as obstacle or pedestrian detection. A real time performance is reached. Experimental results on several environments and comparisons with a previous work are presented.
|
|
|
Joan Serrat, Jordi Vitria and J. Pladellorens. 1991. Morphological Segmentation of Heart Scintigraphic image Sequences. Computer Assisted Radiology..
|
|
|
Craig Von Land, Ricardo Toledo and Juan J. Villanueva. 1997. TeleRegions: Application of Telematics in Cardiac Care. Computers In Cardiology.195–198.
|
|
|
Yi Xiao, Felipe Codevilla, Christopher Pal and Antonio Lopez. 2020. Action-Based Representation Learning for Autonomous Driving. Conference on Robot Learning.
Abstract: Human drivers produce a vast amount of data which could, in principle, be used to improve autonomous driving systems. Unfortunately, seemingly straightforward approaches for creating end-to-end driving models that map sensor data directly into driving actions are problematic in terms of interpretability, and typically have significant difficulty dealing with spurious correlations. Alternatively, we propose to use this kind of action-based driving data for learning representations. Our experiments show that an affordance-based driving model pre-trained with this approach can leverage a relatively small amount of weakly annotated imagery and outperform pure end-to-end driving models, while being more interpretable. Further, we demonstrate how this strategy outperforms previous methods based on learning inverse dynamics models as well as other methods based on heavy human supervision (ImageNet).
|
|
|
J. Mauri and 14 others. 2000. Moviment del vas en l anàlisi d imatges d ecografia intracoronària: un model matemàtic. Congrés de la Societat Catalana de Cardiologia..
|
|
|
J. Mauri and 14 others. 2000. Avaluació del Conjunt Stent/Artèria mitjançant ecografia intracoronària: lentorn informàtic. Congrés de la Societat Catalana de Cardiologia..
|
|
|
Mohamed Ramzy Ibrahim, Robert Benavente, Felipe Lumbreras and Daniel Ponsa. 2022. 3DRRDB: Super Resolution of Multiple Remote Sensing Images using 3D Residual in Residual Dense Blocks. CVPR 2022 Workshop on IEEE Perception Beyond the Visible Spectrum workshop series (PBVS, 18th Edition).
Abstract: The rapid advancement of Deep Convolutional Neural Networks helped in solving many remote sensing problems, especially the problems of super-resolution. However, most state-of-the-art methods focus more on Single Image Super-Resolution neglecting Multi-Image Super-Resolution. In this work, a new proposed 3D Residual in Residual Dense Blocks model (3DRRDB) focuses on remote sensing Multi-Image Super-Resolution for two different single spectral bands. The proposed 3DRRDB model explores the idea of 3D convolution layers in deeply connected Dense Blocks and the effect of local and global residual connections with residual scaling in Multi-Image Super-Resolution. The model tested on the Proba-V challenge dataset shows a significant improvement above the current state-of-the-art models scoring a Corrected Peak Signal to Noise Ratio (cPSNR) of 48.79 dB and 50.83 dB for Near Infrared (NIR) and RED Bands respectively. Moreover, the proposed 3DRRDB model scores a Corrected Structural Similarity Index Measure (cSSIM) of 0.9865 and 0.9909 for NIR and RED bands respectively.
Keywords: Training; Solid modeling; Three-dimensional displays; PSNR; Convolution; Superresolution; Pattern recognition
|
|
|
David Vazquez, Jiaolong Xu, Sebastian Ramos, Antonio Lopez and Daniel Ponsa. 2013. Weakly Supervised Automatic Annotation of Pedestrian Bounding Boxes. CVPR Workshop on Ground Truth – What is a good dataset?. IEEE, 706–711.
Abstract: Among the components of a pedestrian detector, its trained pedestrian classifier is crucial for achieving the desired performance. The initial task of the training process consists in collecting samples of pedestrians and background, which involves tiresome manual annotation of pedestrian bounding boxes (BBs). Thus, recent works have assessed the use of automatically collected samples from photo-realistic virtual worlds. However, learning from virtual-world samples and testing in real-world images may suffer the dataset shift problem. Accordingly, in this paper we assess an strategy to collect samples from the real world and retrain with them, thus avoiding the dataset shift, but in such a way that no BBs of real-world pedestrians have to be provided. In particular, we train a pedestrian classifier based on virtual-world samples (no human annotation required). Then, using such a classifier we collect pedestrian samples from real-world images by detection. After, a human oracle rejects the false detections efficiently (weak annotation). Finally, a new classifier is trained with the accepted detections. We show that this classifier is competitive with respect to the counterpart trained with samples collected by manually annotating hundreds of pedestrian BBs.
Keywords: Pedestrian Detection; Domain Adaptation
|
|
|
Jiaolong Xu, David Vazquez, Sebastian Ramos, Antonio Lopez and Daniel Ponsa. 2013. Adapting a Pedestrian Detector by Boosting LDA Exemplar Classifiers. CVPR Workshop on Ground Truth – What is a good dataset?.688–693.
Abstract: Training vision-based pedestrian detectors using synthetic datasets (virtual world) is a useful technique to collect automatically the training examples with their pixel-wise ground truth. However, as it is often the case, these detectors must operate in real-world images, experiencing a significant drop of their performance. In fact, this effect also occurs among different real-world datasets, i.e. detectors' accuracy drops when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, in order to avoid this problem, it is required to adapt the detector trained with synthetic data to operate in the real-world scenario. In this paper, we propose a domain adaptation approach based on boosting LDA exemplar classifiers from both virtual and real worlds. We evaluate our proposal on multiple real-world pedestrian detection datasets. The results show that our method can efficiently adapt the exemplar classifiers from virtual to real world, avoiding drops in average precision over the 15%.
Keywords: Pedestrian Detection; Domain Adaptation
|
|
|
Antonio Lopez and Joan Serrat. 1996. Tracing crease curves by solving a system of differential equations. ECCV 1996. (LNCS.)
|
|