toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Subhajit Maity; Sanket Biswas; Siladittya Manna; Ayan Banerjee; Josep Llados; Saumik Bhattacharya; Umapada Pal edit   pdf
url  doi
openurl 
  Title SelfDocSeg: A Self-Supervised vision-based Approach towards Document Segmentation Type Conference Article
  Year 2023 Publication 17th International Conference on Doccument Analysis and Recognition Abbreviated Journal  
  Volume 14187 Issue Pages 342–360  
  Keywords  
  Abstract Document layout analysis is a known problem to the documents research community and has been vastly explored yielding a multitude of solutions ranging from text mining, and recognition to graph-based representation, visual feature extraction, etc. However, most of the existing works have ignored the crucial fact regarding the scarcity of labeled data. With growing internet connectivity to personal life, an enormous amount of documents had been available in the public domain and thus making data annotation a tedious task. We address this challenge using self-supervision and unlike, the few existing self-supervised document segmentation approaches which use text mining and textual labels, we use a complete vision-based approach in pre-training without any ground-truth label or its derivative. Instead, we generate pseudo-layouts from the document images to pre-train an image encoder to learn the document object representation and localization in a self-supervised framework before fine-tuning it with an object detection model. We show that our pipeline sets a new benchmark in this context and performs at par with the existing methods and the supervised counterparts, if not outperforms. The code is made publicly available at: this https URL  
  Address Document Layout Analysis; Document  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ MBM2023 Serial 3990  
Permanent link to this record
 

 
Author Sergi Garcia Bordils; Dimosthenis Karatzas; Marçal Rusiñol edit   pdf
url  openurl
  Title STEP – Towards Structured Scene-Text Spotting Type Conference Article
  Year 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 883-892  
  Keywords  
  Abstract We introduce the structured scene-text spotting task, which requires a scene-text OCR system to spot text in the wild according to a query regular expression. Contrary to generic scene text OCR, structured scene-text spotting seeks to dynamically condition both scene text detection and recognition on user-provided regular expressions. To tackle this task, we propose the Structured TExt sPotter (STEP), a model that exploits the provided text structure to guide the OCR process. STEP is able to deal with regular expressions that contain spaces and it is not bound to detection at the word-level granularity. Our approach enables accurate zero-shot structured text spotting in a wide variety of real-world reading scenarios and is solely trained on publicly available data. To demonstrate the effectiveness of our approach, we introduce a new challenging test dataset that contains several types of out-of-vocabulary structured text, reflecting important reading applications of fields such as prices, dates, serial numbers, license plates etc. We demonstrate that STEP can provide specialised OCR performance on demand in all tested scenarios.  
  Address Waikoloa; Hawai; USA; January 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference WACV  
  Notes DAG Approved no  
  Call Number Admin @ si @ GKR2024 Serial 3992  
Permanent link to this record
 

 
Author Souhail Bakkali; Sanket Biswas; Zuheng Ming; Mickael Coustaty; Marçal Rusiñol; Oriol Ramos Terrades; Josep Llados edit   pdf
url  openurl
  Title TransferDoc: A Self-Supervised Transferable Document Representation Learning Model Unifying Vision and Language Type Miscellaneous
  Year 2023 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The field of visual document understanding has witnessed a rapid growth in emerging challenges and powerful multi-modal strategies. However, they rely on an extensive amount of document data to learn their pretext objectives in a ``pre-train-then-fine-tune'' paradigm and thus, suffer a significant performance drop in real-world online industrial settings. One major reason is the over-reliance on OCR engines to extract local positional information within a document page. Therefore, this hinders the model's generalizability, flexibility and robustness due to the lack of capturing global information within a document image. We introduce TransferDoc, a cross-modal transformer-based architecture pre-trained in a self-supervised fashion using three novel pretext objectives. TransferDoc learns richer semantic concepts by unifying language and visual representations, which enables the production of more transferable models. Besides, two novel downstream tasks have been introduced for a ``closer-to-real'' industrial evaluation scenario where TransferDoc outperforms other state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ BBM2023 Serial 3995  
Permanent link to this record
 

 
Author Ruben Perez Tito; Khanh Nguyen; Marlon Tobaben; Raouf Kerkouche; Mohamed Ali Souibgui; Kangsoo Jung; Lei Kang; Ernest Valveny; Antti Honkela; Mario Fritz; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Privacy-Aware Document Visual Question Answering Type Miscellaneous
  Year 2023 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Document Visual Question Answering (DocVQA) is a fast growing branch of document understanding. Despite the fact that documents contain sensitive or copyrighted information, none of the current DocVQA methods offers strong privacy guarantees.
In this work, we explore privacy in the domain of DocVQA for the first time. We highlight privacy issues in state of the art multi-modal LLM models used for DocVQA, and explore possible solutions.
Specifically, we focus on the invoice processing use case as a realistic, widely used scenario for document understanding, and propose a large scale DocVQA dataset comprising invoice documents and associated questions and answers. We employ a federated learning scheme, that reflects the real-life distribution of documents in different businesses, and we explore the use case where the ID of the invoice issuer is the sensitive information to be protected.
We demonstrate that non-private models tend to memorise, behaviour that can lead to exposing private information. We then evaluate baseline training schemes employing federated learning and differential privacy in this multi-modal scenario, where the sensitive information might be exposed through any of the two input modalities: vision (document image) or language (OCR tokens).
Finally, we design an attack exploiting the memorisation effect of the model, and demonstrate its effectiveness in probing different DocVQA models.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ PNT2023 Serial 4012  
Permanent link to this record
 

 
Author Beata Megyesi; Alicia Fornes; Nils Kopal; Benedek Lang edit  url
openurl 
  Title Historical Cryptology Type Book Chapter
  Year 2024 Publication Learning and Experiencing Cryptography with CrypTool and SageMath Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Historical cryptology studies (original) encrypted manuscripts, often handwritten sources, produced in our history. These historical sources can be found in archives, often hidden without any indexing and therefore hard to locate. Once found they need to be digitized and turned into a machine-readable text format before they can be deciphered with computational methods. The focus of historical cryptology is not primarily the development of sophisticated algorithms for decipherment, but rather the entire process of analysis of the encrypted source from collection and digitization to transcription and decryption. The process also includes the interpretation and contextualization of the message set in its historical context. There are many challenges on the way, such as mistakes made by the scribe, errors made by the transcriber, damaged pages, handwriting styles that are difficult to interpret, historical languages from various time periods, and hidden underlying language of the message. Ciphertexts vary greatly in terms of their code system and symbol sets used with more or less distinguishable symbols. Ciphertexts can be embedded in clearly written text, or shorter or longer sequences of cleartext can be embedded in the ciphertext. The ciphers used mostly in historical times are substitutions (simple, homophonic, or polyphonic), with or without nomenclatures, encoded as digits or symbol sequences, with or without spaces. So the circumstances are different from those in modern cryptography which focuses on methods (algorithms) and their strengths and assumes that the algorithm is applied correctly. For both historical and modern cryptology, attack vectors outside the algorithm are applied like implementation flaws and side-channel attacks. In this chapter, we give an introduction to the field of historical cryptology and present an overview of how researchers today process historical encrypted sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ MFK2024 Serial 4020  
Permanent link to this record
 

 
Author Ayan Banerjee; Sanket Biswas; Josep Llados; Umapada Pal edit   pdf
url  openurl
  Title GraphKD: Exploring Knowledge Distillation Towards Document Object Detection with Structured Graph Creation Type Miscellaneous
  Year 2024 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Object detection in documents is a key step to automate the structural elements identification process in a digital or scanned document through understanding the hierarchical structure and relationships between different elements. Large and complex models, while achieving high accuracy, can be computationally expensive and memory-intensive, making them impractical for deployment on resource constrained devices. Knowledge distillation allows us to create small and more efficient models that retain much of the performance of their larger counterparts. Here we present a graph-based knowledge distillation framework to correctly identify and localize the document objects in a document image. Here, we design a structured graph with nodes containing proposal-level features and edges representing the relationship between the different proposal regions. Also, to reduce text bias an adaptive node sampling strategy is designed to prune the weight distribution and put more weightage on non-text nodes. We encode the complete graph as a knowledge representation and transfer it from the teacher to the student through the proposed distillation loss by effectively capturing both local and global information concurrently. Extensive experimentation on competitive benchmarks demonstrates that the proposed framework outperforms the current state-of-the-art approaches. The code will be available at: this https URL.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition (up) Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ BBL2024b Serial 4023  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: