toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Fernando Barrera edit  openurl
  Title Multimodal Stereo from Thermal Infrared and Visible Spectrum Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recent advances in thermal infrared imaging (LWIR) has allowed its use in applications beyond of the military domain. Nowadays, this new family of sensors is included in different technical and scientific applications. They offer features that facilitate tasks, such as detection of pedestrians, hot spots, differences in temperature, among others, which can significantly improve the performance of a system where the persons are expected to play the principal role. For instance, video surveillance applications, monitoring, and pedestrian detection.
During this dissertation the next question is stated: Could a couple of sensors measuring different bands of the electromagnetic spectrum, as the visible and thermal infrared, be used to extract depth information? Although it is a complex question, we shows that a system of these characteristics is possible as well as their advantages, drawbacks, and potential opportunities.
The matching and fusion of data coming from different sensors, as the emissions registered at visible and infrared bands, represents a special challenge, because it has been showed that theses signals are weak correlated. Therefore, many traditional techniques of image processing and computer vision are not helpful, requiring adjustments for their correct performance in every modality.
In this research an experimental study that compares different cost functions and matching approaches is performed, in order to build a multimodal stereovision system. Furthermore, the common problems in infrared/visible stereo, specially in the outdoor scenes are identified. Our framework summarizes the architecture of a generic stereo algorithm, at different levels: computational, functional, and structural, which can be extended toward high-level fusion (semantic) and high-order (prior).The proposed framework is intended to explore novel multimodal stereo matching approaches, going from sparse to dense representations (both disparity and depth maps). Moreover, context information is added in form of priors and assumptions. Finally, this dissertation shows a promissory way toward the integration of multiple sensors for recovering three-dimensional information.
 
  Address (down)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Felipe Lumbreras;Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Bar2012 Serial 2209  
Permanent link to this record
 

 
Author Diego Alejandro Cheda edit  openurl
  Title Monocular Depth Cues in Computer Vision Applications Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Depth perception is a key aspect of human vision. It is a routine and essential visual task that the human do effortlessly in many daily activities. This has often been associated with stereo vision, but humans have an amazing ability to perceive depth relations even from a single image by using several monocular cues.

In the computer vision field, if image depth information were available, many tasks could be posed from a different perspective for the sake of higher performance and robustness. Nevertheless, given a single image, this possibility is usually discarded, since obtaining depth information has frequently been performed by three-dimensional reconstruction techniques, requiring two or more images of the same scene taken from different viewpoints. Recently, some proposals have shown the feasibility of computing depth information from single images. In essence, the idea is to take advantage of a priori knowledge of the acquisition conditions and the observed scene to estimate depth from monocular pictorial cues. These approaches try to precisely estimate the scene depth maps by employing computationally demanding techniques. However, to assist many computer vision algorithms, it is not really necessary computing a costly and detailed depth map of the image. Indeed, just a rough depth description can be very valuable in many problems.

In this thesis, we have demonstrated how coarse depth information can be integrated in different tasks following alternative strategies to obtain more precise and robust results. In that sense, we have proposed a simple, but reliable enough technique, whereby image scene regions are categorized into discrete depth ranges to build a coarse depth map. Based on this representation, we have explored the potential usefulness of our method in three application domains from novel viewpoints: camera rotation parameters estimation, background estimation and pedestrian candidate generation. In the first case, we have computed camera rotation mounted in a moving vehicle applying two novels methods based on distant elements in the image, where the translation component of the image flow vectors is negligible. In background estimation, we have proposed a novel method to reconstruct the background by penalizing close regions in a cost function, which integrates color, motion, and depth terms. Finally, we have benefited of geometric and depth information available on single images for pedestrian candidate generation to significantly reduce the number of generated windows to be further processed by a pedestrian classifier. In all cases, results have shown that our approaches contribute to better performances.
 
  Address (down)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Daniel Ponsa;Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Che2012 Serial 2210  
Permanent link to this record
 

 
Author Katerine Diaz; Francesc J. Ferri edit  url
isbn  openurl
  Title Extensiones del método de vectores comunes discriminantes Aplicadas a la clasificación de imágenes Type Book Whole
  Year 2013 Publication Extensiones del método de vectores comunes discriminantes Aplicadas a la clasificación de imágenes Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Los métodos basados en subespacios son una herramienta muy utilizada en aplicaciones de visión por computador. Aquí se presentan y validan algunos algoritmos que hemos propuesto en este campo de investigación. El primer algoritmo está relacionado con una extensión del método de vectores comunes discriminantes con kernel, que reinterpreta el espacio nulo de la matriz de dispersión intra-clase del conjunto de entrenamiento para obtener las características discriminantes. Dentro de los métodos basados en subespacios existen diferentes tipos de entrenamiento. Uno de los más populares, pero no por ello uno de los más eficientes, es el aprendizaje por lotes. En este tipo de aprendizaje, todas las muestras del conjunto de entrenamiento tienen que estar disponibles desde el inicio. De este modo, cuando nuevas muestras se ponen a disposición del algoritmo, el sistema tiene que ser reentrenado de nuevo desde cero. Una alternativa a este tipo de entrenamiento es el aprendizaje incremental. Aquí­ se proponen diferentes algoritmos incrementales del método de vectores comunes discriminantes.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-639-55339-0 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ DiF2013 Serial 2440  
Permanent link to this record
 

 
Author Monica Piñol edit  isbn
openurl 
  Title Reinforcement Learning of Visual Descriptors for Object Recognition Type Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The human visual system is able to recognize the object in an image even if the object is partially occluded, from various points of view, in different colors, or with independence of the distance to the object. To do this, the eye obtains an image and extracts features that are sent to the brain, and then, in the brain the object is recognized. In computer vision, the object recognition branch tries to learns from the human visual system behaviour to achieve its goal. Hence, an algorithm is used to identify representative features of the scene (detection), then another algorithm is used to describe these points (descriptor) and finally the extracted information is used for classifying the object in the scene. The selection of this set of algorithms is a very complicated task and thus, a very active research field. In this thesis we are focused on the selection/learning of the best descriptor for a given image. In the state of the art there are several descriptors but we do not know how to choose the best descriptor because depends on scenes that we will use (dataset) and the algorithm chosen to do the classification. We propose a framework based on reinforcement learning and bag of features to choose the best descriptor according to the given image. The system can analyse the behaviour of different learning algorithms and descriptor sets. Furthermore the proposed framework for improving the classification/recognition ratio can be used with minor changes in other computer vision fields, such as video retrieval.  
  Address (down)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ricardo Toledo;Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-5-7 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Piñ2014 Serial 2464  
Permanent link to this record
 

 
Author Alicia Fornes; Gemma Sanchez edit  doi
isbn  openurl
  Title Analysis and Recognition of Music Scores Type Book Chapter
  Year 2014 Publication Handbook of Document Image Processing and Recognition Abbreviated Journal  
  Volume E Issue Pages 749-774  
  Keywords  
  Abstract The analysis and recognition of music scores has attracted the interest of researchers for decades. Optical Music Recognition (OMR) is a classical research field of Document Image Analysis and Recognition (DIAR), whose aim is to extract information from music scores. Music scores contain both graphical and textual information, and for this reason, techniques are closely related to graphics recognition and text recognition. Since music scores use a particular diagrammatic notation that follow the rules of music theory, many approaches make use of context information to guide the recognition and solve ambiguities. This chapter overviews the main Optical Music Recognition (OMR) approaches. Firstly, the different methods are grouped according to the OMR stages, namely, staff removal, music symbol recognition, and syntactical analysis. Secondly, specific approaches for old and handwritten music scores are reviewed. Finally, online approaches and commercial systems are also commented.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor D. Doermann; K. Tombre  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-85729-860-7 Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ FoS2014 Serial 2484  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Ernest Valveny; Gemma Sanchez edit  doi
isbn  openurl
  Title Unsupervised and Notation-Independent Wall Segmentation in Floor Plans Using a Combination of Statistical and Structural Strategies Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages 109-121  
  Keywords Graphics recognition; Floor plan analysis; Object segmentation  
  Abstract In this paper we present a wall segmentation approach in floor plans that is able to work independently to the graphical notation, does not need any pre-annotated data for learning, and is able to segment multiple-shaped walls such as beams and curved-walls. This method results from the combination of the wall segmentation approaches [3, 5] presented recently by the authors. Firstly, potential straight wall segments are extracted in an unsupervised way similar to [3], but restricting even more the wall candidates considered in the original approach. Then, based on [5], these segments are used to learn the texture pattern of walls and spot the lost instances. The presented combination of both methods has been tested on 4 available datasets with different notations and compared qualitatively and quantitatively to the state-of-the-art applied on these collections. Additionally, some qualitative results on floor plans directly downloaded from the Internet are reported in the paper. The overall performance of the method demonstrates either its adaptability to different wall notations and shapes, and to document qualities and resolutions.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ HVS2014 Serial 2535  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; David Fernandez; Alicia Fornes; Ernest Valveny; Gemma Sanchez; Josep Llados edit  doi
isbn  openurl
  Title Runlength Histogram Image Signature for Perceptual Retrieval of Architectural Floor Plans Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages 135-146  
  Keywords Graphics recognition; Graphics retrieval; Image classification  
  Abstract This paper proposes a runlength histogram signature as a perceptual descriptor of architectural plans in a retrieval scenario. The style of an architectural drawing is characterized by the perception of lines, shapes and texture. Such visual stimuli are the basis for defining semantic concepts as space properties, symmetry, density, etc. We propose runlength histograms extracted in vertical, horizontal and diagonal directions as a characterization of line and space properties in floorplans, so it can be roughly associated to a description of walls and room structure. A retrieval application illustrates the performance of the proposed approach, where given a plan as a query, similar ones are obtained from a database. A ground truth based on human observation has been constructed to validate the hypothesis. Additional retrieval results on sketched building’s facades are reported qualitatively in this paper. Its good description and its adaptability to two different sketch drawings despite its simplicity shows the interest of the proposed approach and opens a challenging research line in graphics recognition.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.045; 600.056; 600.061; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ HFF2014 Serial 2536  
Permanent link to this record
 

 
Author German Ros edit  isbn
openurl 
  Title Visual Scene Understanding for Autonomous Vehicles: Understanding Where and What Type Book Whole
  Year 2016 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Making Ground Autonomous Vehicles (GAVs) a reality as a service for the society is one of the major scientific and technological challenges of this century. The potential benefits of autonomous vehicles include reducing accidents, improving traffic congestion and better usage of road infrastructures, among others. These vehicles must operate in our cities, towns and highways, dealing with many different types of situations while respecting traffic rules and protecting human lives. GAVs are expected to deal with all types of scenarios and situations, coping with an uncertain and chaotic world.
Therefore, in order to fulfill these demanding requirements GAVs need to be endowed with the capability of understanding their surrounding at many different levels, by means of affordable sensors and artificial intelligence. This capacity to understand the surroundings and the current situation that the vehicle is involved in is called scene understanding. In this work we investigate novel techniques to bring scene understanding to autonomous vehicles by combining the use of cameras as the main source of information—due to their versatility and affordability—and algorithms based on computer vision and machine learning. We investigate different degrees of understanding of the scene, starting from basic geometric knowledge about where is the vehicle within the scene. A robust and efficient estimation of the vehicle location and pose with respect to a map is one of the most fundamental steps towards autonomous driving. We study this problem from the point of view of robustness and computational efficiency, proposing key insights to improve current solutions. Then we advance to higher levels of abstraction to discover what is in the scene, by recognizing and parsing all the elements present on a driving scene, such as roads, sidewalks, pedestrians, etc. We investigate this problem known as semantic segmentation, proposing new approaches to improve recognition accuracy and computational efficiency. We cover these points by focusing on key aspects such as: (i) how to leverage computation moving semantics to an offline process, (ii) how to train compact architectures based on deconvolutional networks to achieve their maximum potential, (iii) how to use virtual worlds in combination with domain adaptation to produce accurate models in a cost-effective fashion, and (iv) how to use transfer learning techniques to prepare models to new situations. We finally extend the previous level of knowledge enabling systems to reasoning about what has change in a scene with respect to a previous visit, which in return allows for efficient and cost-effective map updating.
 
  Address (down)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa;Julio Guerrero;Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-945373-1-8 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Ros2016 Serial 2860  
Permanent link to this record
 

 
Author Antonio Lopez; Jiaolong Xu; Jose L. Gomez; David Vazquez; German Ros edit   pdf
openurl 
  Title From Virtual to Real World Visual Perception using Domain Adaptation -- The DPM as Example Type Book Chapter
  Year 2017 Publication Domain Adaptation in Computer Vision Applications Abbreviated Journal  
  Volume Issue 13 Pages 243-258  
  Keywords Domain Adaptation  
  Abstract Supervised learning tends to produce more accurate classifiers than unsupervised learning in general. This implies that training data is preferred with annotations. When addressing visual perception challenges, such as localizing certain object classes within an image, the learning of the involved classifiers turns out to be a practical bottleneck. The reason is that, at least, we have to frame object examples with bounding boxes in thousands of images. A priori, the more complex the model is regarding its number of parameters, the more annotated examples are required. This annotation task is performed by human oracles, which ends up in inaccuracies and errors in the annotations (aka ground truth) since the task is inherently very cumbersome and sometimes ambiguous. As an alternative we have pioneered the use of virtual worlds for collecting such annotations automatically and with high precision. However, since the models learned with virtual data must operate in the real world, we still need to perform domain adaptation (DA). In this chapter we revisit the DA of a deformable part-based model (DPM) as an exemplifying case of virtual- to-real-world DA. As a use case, we address the challenge of vehicle detection for driver assistance, using different publicly available virtual-world data. While doing so, we investigate questions such as: how does the domain gap behave due to virtual-vs-real data with respect to dominant object appearance per domain, as well as the role of photo-realism in the virtual world.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Gabriela Csurka  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.085; 601.223; 600.076; 600.118 Approved no  
  Call Number ADAS @ adas @ LXG2017 Serial 2872  
Permanent link to this record
 

 
Author David Geronimo; David Vazquez; Arturo de la Escalera edit  url
openurl 
  Title Vision-Based Advanced Driver Assistance Systems Type Book Chapter
  Year 2017 Publication Computer Vision in Vehicle Technology: Land, Sea, and Air Abbreviated Journal  
  Volume Issue Pages  
  Keywords ADAS; Autonomous Driving  
  Abstract  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number ADAS @ adas @ GVE2017 Serial 2881  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: