toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Katerine Diaz; Aura Hernandez-Sabate; Antonio Lopez edit   pdf
doi  openurl
  Title A reduced feature set for driver head pose estimation Type Journal Article
  Year 2016 Publication Applied Soft Computing Abbreviated Journal ASOC  
  Volume 45 Issue Pages 98-107  
  Keywords Head pose estimation; driving performance evaluation; subspace based methods; linear regression  
  Abstract Evaluation of driving performance is of utmost importance in order to reduce road accident rate. Since driving ability includes visual-spatial and operational attention, among others, head pose estimation of the driver is a crucial indicator of driving performance. This paper proposes a new automatic method for coarse and fine head's yaw angle estimation of the driver. We rely on a set of geometric features computed from just three representative facial keypoints, namely the center of the eyes and the nose tip. With these geometric features, our method combines two manifold embedding methods and a linear regression one. In addition, the method has a confidence mechanism to decide if the classification of a sample is not reliable. The approach has been tested using the CMU-PIE dataset and our own driver dataset. Despite the very few facial keypoints required, the results are comparable to the state-of-the-art techniques. The low computational cost of the method and its robustness makes feasible to integrate it in massive consume devices as a real time application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.085; 600.076; Approved no  
  Call Number Admin @ si @ DHL2016 Serial 2760  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Meritxell Joanpere; Nuria Gorgorio; Lluis Albarracin edit   pdf
url  openurl
  Title Mathematics learning opportunities when playing a Tower Defense Game Type Journal
  Year 2015 Publication International Journal of Serious Games Abbreviated Journal IJSG  
  Volume 2 Issue 4 Pages 57-71  
  Keywords Tower Defense game; learning opportunities; mathematics; problem solving; game design  
  Abstract A qualitative research study is presented herein with the purpose of identifying mathematics learning opportunities in students between 10 and 12 years old while playing a commercial version of a Tower Defense game. These learning opportunities are understood as mathematicisable moments of the game and involve the establishment of relationships between the game and mathematical problem solving. Based on the analysis of these mathematicisable moments, we conclude that the game can promote problem-solving processes and learning opportunities that can be associated with different mathematical contents that appears in mathematics curricula, thought it seems that teacher or new game elements might be needed to facilitate the processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) ADAS; 600.076 Approved no  
  Call Number Admin @ si @ HJG2015 Serial 2730  
Permanent link to this record
 

 
Author Andrew Nolan; Daniel Serrano; Aura Hernandez-Sabate; Daniel Ponsa; Antonio Lopez edit   pdf
openurl 
  Title Obstacle mapping module for quadrotors on outdoor Search and Rescue operations Type Conference Article
  Year 2013 Publication International Micro Air Vehicle Conference and Flight Competition Abbreviated Journal  
  Volume Issue Pages  
  Keywords UAV  
  Abstract Obstacle avoidance remains a challenging task for Micro Aerial Vehicles (MAV), due to their limited payload capacity to carry advanced sensors. Unlike larger vehicles, MAV can only carry light weight sensors, for instance a camera, which is our main assumption in this work. We explore passive monocular depth estimation and propose a novel method Position Aided Depth Estimation
(PADE). We analyse PADE performance and compare it against the extensively used Time To Collision (TTC). We evaluate the accuracy, robustness to noise and speed of three Optical Flow (OF) techniques, combined with both depth estimation methods. Our results show PADE is more accurate than TTC at depths between 0-12 meters and is less sensitive to noise. Our findings highlight the potential application of PADE for MAV to perform safe autonomous navigation in
unknown and unstructured environments.
 
  Address Toulouse; France; September 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IMAV  
  Notes (down) ADAS; 600.054; 600.057;IAM Approved no  
  Call Number Admin @ si @ NSH2013 Serial 2371  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: