toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Adriana Romero edit  openurl
  Title Assisting the training of deep neural networks with applications to computer vision Type Book Whole
  Year (down) 2015 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep learning has recently been enjoying an increasing popularity due to its success in solving challenging tasks. In particular, deep learning has proven to be effective in a large variety of computer vision tasks, such as image classification, object recognition and image parsing. Contrary to previous research, which required engineered feature representations, designed by experts, in order to succeed, deep learning attempts to learn representation hierarchies automatically from data. More recently, the trend has been to go deeper with representation hierarchies.
Learning (very) deep representation hierarchies is a challenging task, which
involves the optimization of highly non-convex functions. Therefore, the search
for algorithms to ease the learning of (very) deep representation hierarchies from data is extensive and ongoing.
In this thesis, we tackle the challenging problem of easing the learning of (very) deep representation hierarchies. We present a hyper-parameter free, off-the-shelf, simple and fast unsupervised algorithm to discover hidden structure from the input data by enforcing a very strong form of sparsity. We study the applicability and potential of the algorithm to learn representations of varying depth in a handful of applications and domains, highlighting the ability of the algorithm to provide discriminative feature representations that are able to achieve top performance.
Yet, while emphasizing the great value of unsupervised learning methods when
labeled data is scarce, the recent industrial success of deep learning has revolved around supervised learning. Supervised learning is currently the focus of many recent research advances, which have shown to excel at many computer vision tasks. Top performing systems often involve very large and deep models, which are not well suited for applications with time or memory limitations. More in line with the current trends, we engage in making top performing models more efficient, by designing very deep and thin models. Since training such very deep models still appears to be a challenging task, we introduce a novel algorithm that guides the training of very thin and deep models by hinting their intermediate representations.
Very deep and thin models trained by the proposed algorithm end up extracting feature representations that are comparable or even better performing
than the ones extracted by large state-of-the-art models, while compellingly
reducing the time and memory consumption of the model.
 
  Address October 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Carlo Gatta;Petia Radeva  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ Rom2015 Serial 2707  
Permanent link to this record
 

 
Author Sergio Vera edit  isbn
openurl 
  Title Anatomic Registration based on Medial Axis Parametrizations Type Book Whole
  Year (down) 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Image registration has been for many years the gold standard method to bring two images into correspondence. It has been used extensively in the eld of medical imaging in order to put images of di erent patients into a common overlapping spatial position. However, medical image registration is a slow, iterative optimization process, where many variables and prone to fall into the pit traps local minima.
A coordinate system parameterizing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to speci c anatomical sites, parameterizations ensure integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric meshes over the surface of anatomical shapes, given their ability to set values at speci c locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at discrete sites of limited geometric diversity.
The medial surface of the shape can be used to provide a continuous basis for the de nition of a depth coordinate. However, given that di erent methods for generation of medial surfaces generate di erent manifolds, not all of them are equally suited to be the basis of radial coordinate for a parameterization. It would be desirable that the medial surface will be smooth, and robust to surface shape noise, with low number of spurious branches or surfaces.
In this thesis we present methods for computation of smooth medial manifolds and apply them to the generation of for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. This reference system sets a solid base for creating anatomical models of the anatomical shapes, and allows comparing several patients in a common framework of reference.
 
  Address November 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Miguel Angel Gonzalez Ballester  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-8-3 Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ Ver2015 Serial 2708  
Permanent link to this record
 

 
Author Joan M. Nuñez edit  isbn
openurl 
  Title Vascular Pattern Characterization in Colonoscopy Images Type Book Whole
  Year (down) 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Colorectal cancer is the third most common cancer worldwide and the second most common malignant tumor in Europe. Screening tests have shown to be very e ective in increasing the survival rates since they allow an early detection of polyps. Among the di erent screening techniques, colonoscopy is considered the gold standard although clinical studies mention several problems that have an impact in the quality of the procedure. The navigation through the rectum and colon track can be challenging for the physicians which can increase polyp miss rates. The thorough visualization of the colon track must be ensured so that
the chances of missing lesions are minimized. The visual analysis of colonoscopy images can provide important information to the physicians and support their navigation during the procedure.
Blood vessels and their branching patterns can provide descriptive power to potentially develop biometric markers. Anatomical markers based on blood vessel patterns could be used to identify a particular scene in colonoscopy videos and to support endoscope navigation by generating a sequence of ordered scenes through the di erent colon sections. By verifying the presence of vascular content in the endoluminal scene it is also possible to certify a proper
inspection of the colon mucosa and to improve polyp localization. Considering the potential uses of blood vessel description, this contribution studies the characterization of the vascular content and the analysis of the descriptive power of its branching patterns.
Blood vessel characterization in colonoscopy images is shown to be a challenging task. The endoluminal scene is conformed by several elements whose similar characteristics hinder the development of particular models for each of them. To overcome such diculties we propose the use of the blood vessel branching characteristics as key features for pattern description. We present a model to characterize junctions in binary patterns. The implementation
of the junction model allows us to develop a junction localization method. We
created two data sets including manually labeled vessel information as well as manual ground truths of two types of keypoint landmarks: junctions and endpoints. The proposed method outperforms the available algorithms in the literature in experiments in both, our newly created colon vessel data set, and in DRIVE retinal fundus image data set. In the latter case, we created a manual ground truth of junction coordinates. Since we want to explore the descriptive potential of junctions and vessels, we propose a graph-based approach to
create anatomical markers. In the context of polyp localization, we present a new method to inhibit the in uence of blood vessels in the extraction valley-pro le information. The results show that our methodology decreases vessel in
uence, increases polyp information and leads to an improvement in state-of-the-art polyp localization performance. We also propose a polyp-speci c segmentation method that outperforms other general and speci c approaches.
 
  Address November 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Fernando Vilariño  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-943427-6-9 Medium  
  Area Expedition Conference  
  Notes MV Approved no  
  Call Number Admin @ si @ Nuñ2015 Serial 2709  
Permanent link to this record
 

 
Author David Geronimo; Antonio Lopez edit  doi
isbn  openurl
  Title Vision-based Pedestrian Protection Systems for Intelligent Vehicles Type Book Whole
  Year (down) 2014 Publication SpringerBriefs in Computer Science Abbreviated Journal  
  Volume Issue Pages 1-114  
  Keywords Computer Vision; Driver Assistance Systems; Intelligent Vehicles; Pedestrian Detection; Vulnerable Road Users  
  Abstract Pedestrian Protection Systems (PPSs) are on-board systems aimed at detecting and tracking people in the surroundings of a vehicle in order to avoid potentially dangerous situations. These systems, together with other Advanced Driver Assistance Systems (ADAS) such as lane departure warning or adaptive cruise control, are one of the most promising ways to improve traffic safety. By the use of computer vision, cameras working either in the visible or infra-red spectra have been demonstrated as a reliable sensor to perform this task. Nevertheless, the variability of human’s appearance, not only in terms of clothing and sizes but also as a result of their dynamic shape, makes pedestrians one of the most complex classes even for computer vision. Moreover, the unstructured changing and unpredictable environment in which such on-board systems must work makes detection a difficult task to be carried out with the demanded robustness. In this brief, the state of the art in PPSs is introduced through the review of the most relevant papers of the last decade. A common computational architecture is presented as a framework to organize each method according to its main contribution. More than 300 papers are referenced, most of them addressing pedestrian detection and others corresponding to the descriptors (features), pedestrian models, and learning machines used. In addition, an overview of topics such as real-time aspects, systems benchmarking and future challenges of this research area are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Briefs in Computer Vision Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4614-7986-4 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number GeL2014 Serial 2325  
Permanent link to this record
 

 
Author Monica Piñol edit  isbn
openurl 
  Title Reinforcement Learning of Visual Descriptors for Object Recognition Type Book Whole
  Year (down) 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The human visual system is able to recognize the object in an image even if the object is partially occluded, from various points of view, in different colors, or with independence of the distance to the object. To do this, the eye obtains an image and extracts features that are sent to the brain, and then, in the brain the object is recognized. In computer vision, the object recognition branch tries to learns from the human visual system behaviour to achieve its goal. Hence, an algorithm is used to identify representative features of the scene (detection), then another algorithm is used to describe these points (descriptor) and finally the extracted information is used for classifying the object in the scene. The selection of this set of algorithms is a very complicated task and thus, a very active research field. In this thesis we are focused on the selection/learning of the best descriptor for a given image. In the state of the art there are several descriptors but we do not know how to choose the best descriptor because depends on scenes that we will use (dataset) and the algorithm chosen to do the classification. We propose a framework based on reinforcement learning and bag of features to choose the best descriptor according to the given image. The system can analyse the behaviour of different learning algorithms and descriptor sets. Furthermore the proposed framework for improving the classification/recognition ratio can be used with minor changes in other computer vision fields, such as video retrieval.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ricardo Toledo;Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-5-7 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ Piñ2014 Serial 2464  
Permanent link to this record
 

 
Author Anjan Dutta edit  isbn
openurl 
  Title Inexact Subgraph Matching Applied to Symbol Spotting in Graphical Documents Type Book Whole
  Year (down) 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract There is a resurgence in the use of structural approaches in the usual object recognition and retrieval problem. Graph theory, in particular, graph matching plays a relevant role in that. Specifically, the detection of an object (or a part of that) in an image in terms of structural features can be formulated as a subgraph matching. Subgraph matching is a challenging task. Specially due to the presence of outliers most of the graph matching algorithms do not perform well in subgraph matching scenario. Also exact subgraph isomorphism has proven to be an NP-complete problem. So naturally, in graph matching community, there are lot of efforts addressing the problem of subgraph matching within suboptimal bound. Most of them work with approximate algorithms that try to get an inexact solution in estimated way. In addition, usual recognition must cope with distortion. Inexact graph matching consists in finding the best isomorphism under a similarity measure. Theoretically this thesis proposes algorithms for solving subgraph matching in an approximate and inexact way.
We consider the symbol spotting problem on graphical documents or line drawings from application point of view. This is a well known problem in the graphics recognition community. It can be further applied for indexing and classification of documents based on their contents. The structural nature of this kind of documents easily motivates one for giving a graph based representation. So the symbol spotting problem on graphical documents can be considered as a subgraph matching problem. The main challenges in this application domain is the noise and distortions that might come during the usage, digitalization and raster to vector conversion of those documents. Apart from that computer vision nowadays is not any more confined within a limited number of images. So dealing a huge number of images with graph based method is a further challenge.
In this thesis, on one hand, we have worked on efficient and robust graph representation to cope with the noise and distortions coming from documents. On the other hand, we have worked on different graph based methods and framework to solve the subgraph matching problem in a better approximated way, which can also deal with considerable number of images. Firstly, we propose a symbol spotting method by hashing serialized subgraphs. Graph serialization allows to create factorized substructures such as graph paths, which can be organized in hash tables depending on the structural similarities of the serialized subgraphs. The involvement of hashing techniques helps to reduce the search space substantially and speeds up the spotting procedure. Secondly, we introduce contextual similarities based on the walk based propagation on tensor product graph. These contextual similarities involve higher order information and more reliable than pairwise similarities. We use these higher order similarities to formulate subgraph matching as a node and edge selection problem in the tensor product graph. Thirdly, we propose near convex grouping to form near convex region adjacency graph which eliminates the limitations of traditional region adjacency graph representation for graphic recognition. Fourthly, we propose a hierarchical graph representation by simplifying/correcting the structural errors to create a hierarchical graph of the base graph. Later these hierarchical graph structures are matched with some graph matching methods. Apart from that, in this thesis we have provided an overall experimental comparison of all the methods and some of the state-of-the-art methods. Furthermore, some dataset models have also been proposed.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Umapada Pal  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-4-0 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ Dut2014 Serial 2465  
Permanent link to this record
 

 
Author Michal Drozdzal edit  isbn
openurl 
  Title Sequential image analysis for computer-aided wireless endoscopy Type Book Whole
  Year (down) 2014 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Wireless Capsule Endoscopy (WCE) is a technique for inner-visualization of the entire small intestine and, thus, offers an interesting perspective on intestinal motility. The two major drawbacks of this technique are: 1) huge amount of data acquired by WCE makes the motility analysis tedious and 2) since the capsule is the first tool that offers complete inner-visualization of the small intestine,the exact importance of the observed events is still an open issue. Therefore, in this thesis, a novel computer-aided system for intestinal motility analysis is presented. The goal of the system is to provide an easily-comprehensible visual description of motility-related intestinal events to a physician. In order to do so, several tools based either on computer vision concepts or on machine learning techniques are presented. A method for transforming 3D video signal to a holistic image of intestinal motility, called motility bar, is proposed. The method calculates the optimal mapping from video into image from the intestinal motility point of view.
To characterize intestinal motility, methods for automatic extraction of motility information from WCE are presented. Two of them are based on the motility bar and two of them are based on frame-per-frame analysis. In particular, four algorithms dealing with the problems of intestinal contraction detection, lumen size estimation, intestinal content characterization and wrinkle frame detection are proposed and validated. The results of the algorithms are converted into sequential features using an online statistical test. This test is designed to work with multivariate data streams. To this end, we propose a novel formulation of concentration inequality that is introduced into a robust adaptive windowing algorithm for multivariate data streams. The algorithm is used to obtain robust representation of segments with constant intestinal motility activity. The obtained sequential features are shown to be discriminative in the problem of abnormal motility characterization.
Finally, we tackle the problem of efficient labeling. To this end, we incorporate active learning concepts to the problems present in WCE data and propose two approaches. The first one is based the concepts of sequential learning and the second one adapts the partition-based active learning to an error-free labeling scheme. All these steps are sufficient to provide an extensive visual description of intestinal motility that can be used by an expert as decision support system.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Petia Radeva  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-3-3 Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ Dro2014 Serial 2486  
Permanent link to this record
 

 
Author Antonio Clavelli edit  isbn
openurl 
  Title A computational model of eye guidance, searching for text in real scene images Type Book Whole
  Year (down) 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Searching for text objects in real scene images is an open problem and a very active computer vision research area. A large number of methods have been proposed tackling the text search as extension of the ones from the document analysis field or inspired by general purpose object detection methods. However the general problem of object search in real scene images remains an extremely challenging problem due to the huge variability in object appearance. This thesis builds on top of the most recent findings in the visual attention literature presenting a novel computational model of eye guidance aiming to better describe text object search in real scene images.
First are presented the relevant state-of-the-art results from the visual attention literature regarding eye movements and visual search. Relevant models of attention are discussed and integrated with recent observations on the role of top-down constraints and the emerging need for a layered model of attention in which saliency is not the only factor guiding attention. Visual attention is then explained by the interaction of several modulating factors, such as objects, value, plans and saliency. Then we introduce our probabilistic formulation of attention deployment in real scene. The model is based on the rationale that oculomotor control depends on two interacting but distinct processes: an attentional process that assigns value to the sources of information and motor process that flexibly links information with action.
In such framework, the choice of where to look next is task-dependent and oriented to classes of objects embedded within pictures of complex scenes. The dependence on task is taken into account by exploiting the value and the reward of gazing at certain image patches or proto-objects that provide a sparse representation of the scene objects.
In the experimental section the model is tested in laboratory condition, comparing model simulations with data from eye tracking experiments. The comparison is qualitative in terms of observable scan paths and quantitative in terms of statistical similarity of gaze shift amplitude. Experiments are performed using eye tracking data from both a publicly available dataset of face and text and from newly performed eye-tracking experiments on a dataset of street view pictures containing text. The last part of this thesis is dedicated to study the extent to which the proposed model can account for human eye movements in a low constrained setting. We used a mobile eye tracking device and an ad-hoc developed methodology to compare model simulated eye data with the human eye data from mobile eye tracking recordings. Such setting allow to test the model in an incomplete visual information condition, reproducing a close to real-life search task.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Dimosthenis Karatzas;Giuseppe Boccignone;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-6-4 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ Cla2014 Serial 2571  
Permanent link to this record
 

 
Author Jon Almazan edit  openurl
  Title Learning to Represent Handwritten Shapes and Words for Matching and Recognition Type Book Whole
  Year (down) 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Writing is one of the most important forms of communication and for centuries, handwriting had been the most reliable way to preserve knowledge. However, despite the recent development of printing houses and electronic devices, handwriting is still broadly used for taking notes, doing annotations, or sketching ideas.
Transferring the ability of understanding handwritten text or recognizing handwritten shapes to computers has been the goal of many researches due to its huge importance for many different fields. However, designing good representations to deal with handwritten shapes, e.g. symbols or words, is a very challenging problem due to the large variability of these kinds of shapes. One of the consequences of working with handwritten shapes is that we need representations to be robust, i.e., able to adapt to large intra-class variability. We need representations to be discriminative, i.e., able to learn what are the differences between classes. And, we need representations to be efficient, i.e., able to be rapidly computed and compared. Unfortunately, current techniques of handwritten shape representation for matching and recognition do not fulfill some or all of these requirements.
Through this thesis we focus on the problem of learning to represent handwritten shapes aimed at retrieval and recognition tasks. Concretely, on the first part of the thesis, we focus on the general problem of representing any kind of handwritten shape. We first present a novel shape descriptor based on a deformable grid that deals with large deformations by adapting to the shape and where the cells of the grid can be used to extract different features. Then, we propose to use this descriptor to learn statistical models, based on the Active Appearance Model, that jointly learns the variability in structure and texture of a given class. Then, on the second part, we focus on a concrete application, the problem of representing handwritten words, for the tasks of word spotting, where the goal is to find all instances of a query word in a dataset of images, and recognition. First, we address the segmentation-free problem and propose an unsupervised, sliding-window-based approach that achieves state-of- the-art results in two public datasets. Second, we address the more challenging multi-writer problem, where the variability in words exponentially increases. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace, and where those that represent the same word are close together. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. This leads to a low-dimensional, unified representation of word images and strings, resulting in a method that allows one to perform either image and text searches, as well as image transcription, in a unified framework. We evaluate our methods on different public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ernest Valveny;Alicia Fornes  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ Alm2014 Serial 2572  
Permanent link to this record
 

 
Author David Fernandez edit  isbn
openurl 
  Title Contextual Word Spotting in Historical Handwritten Documents Type Book Whole
  Year (down) 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract There are countless collections of historical documents in archives and libraries that contain plenty of valuable information for historians and researchers. The extraction of this information has become a central task among the Document Analysis researches and practitioners.
There is an increasing interest to digital preserve and provide access to these kind of documents. But only the digitalization is not enough for the researchers. The extraction and/or indexation of information of this documents has had an increased interest among researchers. In many cases, and in particular in historical manuscripts, the full transcription of these documents is extremely dicult due the inherent de ciencies: poor physical preservation, di erent writing styles, obsolete languages, etc. Word spotting has become a popular an ecient alternative to full transcription. It inherently involves a high level of degradation in the images. The search of words is holistically
formulated as a visual search of a given query shape in a larger image, instead of recognising the input text and searching the query word with an ascii string comparison. But the performance of classical word spotting approaches depend on the degradation level of the images being unacceptable in many cases . In this thesis we have proposed a novel paradigm called contextual word spotting method that uses the contextual/semantic information to achieve acceptable results whereas classical word spotting does not reach. The contextual word spotting framework proposed in this thesis is a segmentation-based word spotting approach, so an ecient word segmentation is needed. Historical handwritten
documents present some common diculties that can increase the diculties the extraction of the words. We have proposed a line segmentation approach that formulates the problem as nding the central part path in the area between two consecutive lines. This is solved as a graph traversal problem. A path nding algorithm is used to nd the optimal path in a graph, previously computed, between the text lines. Once the text lines are extracted, words are localized inside the text lines using a word segmentation technique from the state of the
art. Classical word spotting approaches can be improved using the contextual information of the documents. We have introduced a new framework, oriented to handwritten documents that present a highly structure, to extract information making use of context. The framework is an ecient tool for semi-automatic transcription that uses the contextual information to achieve better results than classical word spotting approaches. The contextual information is
automatically discovered by recognizing repetitive structures and categorizing all the words according to semantic classes. The most frequent words in each semantic cluster are extracted and the same text is used to transcribe all them. The experimental results achieved in this thesis outperform classical word spotting approaches demonstrating the suitability of the proposed ensemble architecture for spotting words in historical handwritten documents using contextual information.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Alicia Fornes  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-7-1 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ Fer2014 Serial 2573  
Permanent link to this record
 

 
Author Lluis Pere de las Heras edit  isbn
openurl 
  Title Relational Models for Visual Understanding of Graphical Documents. Application to Architectural Drawings. Type Book Whole
  Year (down) 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Graphical documents express complex concepts using a visual language. This language consists of a vocabulary (symbols) and a syntax (structural relations between symbols) that articulate a semantic meaning in a certain context. Therefore, the automatic interpretation by computers of these sort of documents entails three main steps: the detection of the symbols, the extraction of the structural relations between these symbols, and the modeling of the knowledge that permits the extraction of the semantics. Di erent domains in graphical documents include: architectural and engineering drawings, maps, owcharts, etc.
Graphics Recognition in particular and Document Image Analysis in general are
born from the industrial need of interpreting a massive amount of digitalized documents after the emergence of the scanner. Although many years have passed, the graphical document understanding problem still seems to be far from being solved. The main reason is that the vast majority of the systems in the literature focus on very speci c problems, where the domain of the document dictates the implementation of the interpretation. As a result, it is dicult to reuse these strategies on di erent data and on di erent contexts, hindering thus the natural progress in the eld.
In this thesis, we face the graphical document understanding problem by proposing several relational models at di erent levels that are designed from a generic perspective. Firstly, we introduce three di erent strategies for the detection of symbols. The fi rst method tackles the problem structurally, wherein general knowledge of the domain guides the detection. The second is a statistical method that learns the graphical appearance of the symbols and easily adapts to the big variability of the problem. The third method is a combination of the previous two methods that inherits their respective strengths, i.e. copes the big variability and does not need annotated data. Secondly, we present two relational strategies that tackle the problem of the visual context extraction. The fi rst one is a full bottom up method that heuristically searches in a graph representation the contextual relations between symbols. Contrarily, the second is syntactic method that models probabilistically the structure of the documents. It automatically learns the model, which guides the inference algorithm to encounter the best structural representation for a given input. Finally, we construct a knowledge-based model consisting of an ontological de nition of the domain and real data. This model permits to perform contextual reasoning and to detect semantic inconsistencies within the data. We evaluate the suitability of the proposed contributions in the framework of floor plan interpretation. Since there is no standard in the modeling of these documents there exists an enormous notation variability from plan to plan in terms of vocabulary and syntax. Therefore, floor plan interpretation is a relevant task in the graphical document understanding problem. It is also worth to mention that we make freely available all the resources used in this thesis {the data, the tool used to generate the data, and the evaluation scripts{ with the aim of fostering research in the graphical document understanding task.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Gemma Sanchez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-8-8 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ Her2014 Serial 2574  
Permanent link to this record
 

 
Author Carles Sanchez edit  isbn
openurl 
  Title Tracheal Structure Characterization using Geometric and Appearance Models for Efficient Assessment of Stenosis in Videobronchoscopy Type Book Whole
  Year (down) 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recent advances in endoscopic devices have increased their use for minimal invasive diagnostic and intervention procedures. Among all endoscopic modalities, bronchoscopy is one of the most frequent with around 261 millions of procedures per year. Although the use of bronchoscopy is spread among clinical facilities it presents some drawbacks, being the visual inspection for the assessment of anatomical measurements the most prevalent of them. In
particular, inaccuracies in the estimation of the degree of stenosis (the percentage of obstructed airway) decreases its diagnostic yield and might lead to erroneous treatments. An objective computation of tracheal stenosis in bronchoscopy videos would constitute a breakthrough for this non-invasive technique and a reduction in treatment cost.
This thesis settles the first steps towards on-line reliable extraction of anatomical information from videobronchoscopy for computation of objective measures. In particular, we focus on the computation of the degree of stenosis, which is obtained by comparing the area delimited by a healthy tracheal ring and the stenosed lumen. Reliable extraction of airway structures in interventional videobronchoscopy is a challenging task. This is mainly due to the large variety of acquisition conditions (positions and illumination), devices (different digitalizations) and in videos acquired at the operating room the unpredicted presence of surgical devices (such as probe ends). This thesis contributes to on-line stenosis assessment in several ways. We
propose a parametric strategy for the extraction of lumen and tracheal rings regions based on the characterization of their geometry and appearance that guide a deformable model. The geometric and appearance characterization is based on a physical model describing the way bronchoscopy images are obtained and includes local and global descriptions. In order to ensure a systematic applicability we present a statistical framework to select the optimal
parameters of our method. Experiments perform on the first public annotated database, show that the performance of our method is comparable to the one provided by clinicians and its computation time allows for a on-line implementation in the operating room.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor F. Javier Sanchez;Debora Gil;Jorge Bernal  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-9-5 Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ San2014 Serial 2575  
Permanent link to this record
 

 
Author Jorge Bernal; David Vazquez (eds) edit   pdf
isbn  openurl
  Title Computer vision Trends and Challenges Type Book Whole
  Year (down) 2013 Publication Computer vision Trends and Challenges Abbreviated Journal  
  Volume Issue Pages  
  Keywords CVCRD; Computer Vision  
  Abstract This book contains the papers presented at the Eighth CVC Workshop on Computer Vision Trends and Challenges (CVCR&D'2013). The workshop was held at the Computer Vision Center (Universitat Autònoma de Barcelona), the October 25th, 2013. The CVC workshops provide an excellent opportunity for young researchers and project engineers to share new ideas and knowledge about the progress of their work, and also, to discuss about challenges and future perspectives. In addition, the workshop is the welcome event for new people that recently have joined the institute.

The program of CVCR&D is organized in a single-track single-day workshop. It comprises several sessions dedicated to specific topics. For each session, a doctor working on the topic introduces the general research lines. The PhD students expose their specific research. A poster session will be held for open questions. Session topics cover the current research lines and development projects of the CVC: Medical Imaging, Medical Imaging, Color & Texture Analysis, Object Recognition, Image Sequence Evaluation, Advanced Driver Assistance Systems, Machine Vision, Document Analysis, Pattern Recognition and Applications. We want to thank all paper authors and Program Committee members. Their contribution shows that the CVC has a dynamic, active, and promising scientific community.

We hope you all enjoy this Eighth workshop and we are looking forward to meeting you and new people next year in the Ninth CVCR&D.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Jorge Bernal; David Vazquez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-940902-2-6 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number ADAS @ adas @ BeV2013 Serial 2339  
Permanent link to this record
 

 
Author Muhammad Anwer Rao edit  openurl
  Title Color for Object Detection and Action Recognition Type Book Whole
  Year (down) 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recognizing object categories in real world images is a challenging problem in computer vision. The deformable part based framework is currently the most successful approach for object detection. Generally, HOG are used for image representation within the part-based framework. For action recognition, the bag-of-word framework has shown to provide promising results. Within the bag-of-words framework, local image patches are described by SIFT descriptor. Contrary to object detection and action recognition, combining color and shape has shown to provide the best performance for object and scene recognition.

In the first part of this thesis, we analyze the problem of person detection in still images. Standard person detection approaches rely on intensity based features for image representation while ignoring the color. Channel based descriptors is one of the most commonly used approaches in object recognition. This inspires us to evaluate incorporating color information using the channel based fusion approach for the task of person detection.

In the second part of the thesis, we investigate the problem of object detection in still images. Due to high dimensionality, channel based fusion increases the computational cost. Moreover, channel based fusion has been found to obtain inferior results for object category where one of the visual varies significantly. On the other hand, late fusion is known to provide improved results for a wide range of object categories. A consequence of late fusion strategy is the need of a pure color descriptor. Therefore, we propose to use Color attributes as an explicit color representation for object detection. Color attributes are compact and computationally efficient. Consequently color attributes are combined with traditional shape features providing excellent results for object detection task.

Finally, we focus on the problem of action detection and classification in still images. We investigate the potential of color for action classification and detection in still images. We also evaluate different fusion approaches for combining color and shape information for action recognition. Additionally, an analysis is performed to validate the contribution of color for action recognition. Our results clearly demonstrate that combining color and shape information significantly improve the performance of both action classification and detection in still images.
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Joost Van de Weijer  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Rao2013 Serial 2281  
Permanent link to this record
 

 
Author Javier Marin edit  openurl
  Title Pedestrian Detection Based on Local Experts Type Book Whole
  Year (down) 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract During the last decade vision-based human detection systems have started to play a key rolein multiple applications linked to driver assistance, surveillance, robot sensing and home automation.
Detecting humans is by far one of the most challenging tasks in Computer Vision.
This is mainly due to the high degree of variability in the human appearanceassociated to
the clothing, pose, shape and size. Besides, other factors such as cluttered scenarios, partial occlusions, or environmental conditions can make the detection task even harder.
Most promising methods of the state-of-the-art rely on discriminative learning paradigms which are fed with positive and negative examples. The training data is one of the most
relevant elements in order to build a robust detector as it has to cope the large variability of the target. In order to create this dataset human supervision is required. The drawback at this point is the arduous effort of annotating as well as looking for such claimed variability.
In this PhD thesis we address two recurrent problems in the literature. In the first stage,we aim to reduce the consuming task of annotating, namely, by using computer graphics.
More concretely, we develop a virtual urban scenario for later generating a pedestrian dataset.
Then, we train a detector using this dataset, and finally we assess if this detector can be successfully applied in a real scenario.
In the second stage, we focus on increasing the robustness of our pedestrian detectors
under partial occlusions. In particular, we present a novel occlusion handling approach to increase the performance of block-based holistic methods under partial occlusions. For this purpose, we make use of local experts via a RandomSubspaceMethod (RSM) to handle these cases. If the method infers a possible partial occlusion, then the RSM, based on performance statistics obtained from partially occluded data, is applied. The last objective of this thesis
is to propose a robust pedestrian detector based on an ensemble of local experts. To achieve this goal, we use the random forest paradigm, where the trees act as ensembles an their nodesare the local experts. In particular, each expert focus on performing a robust classification ofa pedestrian body patch. This approach offers computational efficiency and far less design complexity when compared to other state-of-the-artmethods, while reaching better accuracy
 
  Address Barcelona  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Jaume Amores  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Mar2013 Serial 2280  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: