toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Juan Ignacio Toledo edit  isbn
openurl 
  Title Information Extraction from Heterogeneous Handwritten Documents Type Book Whole
  Year (down) 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In this thesis we explore information Extraction from totally or partially handwritten documents. Basically we are dealing with two different application scenarios. The first scenario are modern highly structured documents like forms. In this kind of documents, the semantic information is encoded in different fields with a pre-defined location in the document, therefore, information extraction becomes roughly equivalent to transcription. The second application scenario are loosely structured totally handwritten documents, besides transcribing them, we need to assign a semantic label, from a set of known values to the handwritten words.
In both scenarios, transcription is an important part of the information extraction. For that reason in this thesis we present two methods based on Neural Networks, to transcribe handwritten text.In order to tackle the challenge of loosely structured documents, we have produced a benchmark, consisting of a dataset, a defined set of tasks and a metric, that was presented to the community as an international competition. Also, we propose different models based on Convolutional and Recurrent neural networks that are able to transcribe and assign different semantic labels to each handwritten words, that is, able to perform Information Extraction.
 
  Address July 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Alicia Fornes;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-948531-7-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ Tol2019 Serial 3389  
Permanent link to this record
 

 
Author David Berga edit  isbn
openurl 
  Title Understanding Eye Movements: Psychophysics and a Model of Primary Visual Cortex Type Book Whole
  Year (down) 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Humansmove their eyes in order to learn visual representations of the world. These eye movements depend on distinct factors, either by the scene that we perceive or by our own decisions. To select what is relevant to attend is part of our survival mechanisms and the way we build reality, as we constantly react both consciously and unconsciously to all the stimuli that is projected into our eyes. In this thesis we try to explain (1) how we move our eyes, (2) how to build machines that understand visual information and deploy eyemovements, and (3) how to make these machines understand tasks in order to decide for eye movements.
(1) We provided the analysis of eye movement behavior elicited by low-level feature distinctiveness with a dataset of 230 synthetically-generated image patterns. A total of 15 types of stimuli has been generated (e.g. orientation, brightness, color, size, etc.), with 7 feature contrasts for each feature category. Eye-tracking data was collected from 34 participants during the viewing of the dataset, using Free-Viewing and Visual Search task instructions. Results showed that saliency is predominantly and distinctively influenced by: 1. feature type, 2. feature contrast, 3. Temporality of fixations, 4. task difficulty and 5. center bias. From such dataset (SID4VAM), we have computed a benchmark of saliency models by testing performance using psychophysical patterns. Model performance has been evaluated considering model inspiration and consistency with human psychophysics. Our study reveals that state-of-the-art Deep Learning saliency models do not performwell with synthetic pattern images, instead, modelswith Spectral/Fourier inspiration outperform others in saliency metrics and are more consistent with human psychophysical experimentation.
(2) Computations in the primary visual cortex (area V1 or striate cortex) have long been hypothesized to be responsible, among several visual processing mechanisms, of bottom-up visual attention (also named saliency). In order to validate this hypothesis, images from eye tracking datasets have been processed with a biologically plausible model of V1 (named Neurodynamic SaliencyWaveletModel or NSWAM). Following Li’s neurodynamic model, we define V1’s lateral connections with a network of firing rate neurons, sensitive to visual features such as brightness, color, orientation and scale. Early subcortical processes (i.e. retinal and thalamic) are functionally simulated. The resulting saliency maps are generated from the model output, representing the neuronal activity of V1 projections towards brain areas involved in eye movement control. We want to pinpoint that our unified computational architecture is able to reproduce several visual processes (i.e. brightness, chromatic induction and visual discomfort) without applying any type of training or optimization and keeping the same parametrization. The model has been extended (NSWAM-CM) with an implementation of the cortical magnification function to define the retinotopical projections towards V1, processing neuronal activity for each distinct view during scene observation. Novel computational definitions of top-down inhibition (in terms of inhibition of return and selection mechanisms), are also proposed to predict attention in Free-Viewing and Visual Search conditions. Results show that our model outperforms other biologically-inpired models of saliency prediction as well as to predict visual saccade sequences, specifically for nature and synthetic images. We also show how temporal and spatial characteristics of inhibition of return can improve prediction of saccades, as well as how distinct search strategies (in terms of feature-selective or category-specific inhibition) predict attention at distinct image contexts.
(3) Although previous scanpath models have been able to efficiently predict saccades during Free-Viewing, it is well known that stimulus and task instructions can strongly affect eye movement patterns. In particular, task priming has been shown to be crucial to the deployment of eye movements, involving interactions between brain areas related to goal-directed behavior, working and long-termmemory in combination with stimulus-driven eyemovement neuronal correlates. In our latest study we proposed an extension of the Selective Tuning Attentive Reference Fixation ControllerModel based on task demands (STAR-FCT), describing novel computational definitions of Long-TermMemory, Visual Task Executive and Task Working Memory. With these modules we are able to use textual instructions in order to guide the model to attend to specific categories of objects and/or places in the scene. We have designed our memorymodel by processing a visual hierarchy of low- and high-level features. The relationship between the executive task instructions and the memory representations has been specified using a tree of semantic similarities between the learned features and the object category labels. Results reveal that by using this model, the resulting object localizationmaps and predicted saccades have a higher probability to fall inside the salient regions depending on the distinct task instructions compared to saliency.
 
  Address July 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Xavier Otazu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-948531-8-0 Medium  
  Area Expedition Conference  
  Notes NEUROBIT Approved no  
  Call Number Admin @ si @ Ber2019 Serial 3390  
Permanent link to this record
 

 
Author Xavier Soria edit  isbn
openurl 
  Title Single sensor multi-spectral imaging Type Book Whole
  Year (down) 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The image sensor, nowadays, is rolling the smartphone industry. While some phone brands explore equipping more image sensors, others, like Google, maintain their smartphones with just one sensor; but this sensor is equipped with Deep Learning to enhance the image quality. However, what all brands agree on is the need to research new image sensors; for instance, in 2015 Omnivision and PixelTeq presented new CMOS based image sensors defined as multispectral Single Sensor Camera (SSC), which are capable of capturing multispectral bands. This dissertation presents the benefits of using a multispectral SSCs that, as aforementioned, simultaneously acquires images in the visible and near-infrared (NIR) bands. The principal benefits while addressing problems related to image bands in the spectral range of 400 to 1100 nanometers, there are cost reductions in the hardware and software setup because only one SSC is needed instead of two, and the images alignment are not required any more. Concerning to the NIR spectrum, many works in literature have proven the benefits of working with NIR to enhance RGB images (e.g., image enhancement, remove shadows, dehazing, etc.). In spite of the advantage of using SSC (e.g., low latency), there are some drawback to be solved. One of this drawback corresponds to the nature of the silicon-based sensor, which in addition to capture the RGB image, when the infrared cut off filter is not installed it also acquires NIR information into the visible image. This phenomenon is called RGB and NIR crosstalking. This thesis firstly faces this problem in challenging images and then it shows the benefit of using multispectral images in the edge detection task.
The RGB color restoration from RGBN image is the topic tackled in RGB and NIR crosstalking. Even though in the literature a set of processes have been proposed to face this issue, in this thesis novel approaches, based on DL, are proposed to subtract the additional NIR included in the RGB channel. More precisely, an Artificial Neural Network (NN) and two Convolutional Neural Network (CNN) models are proposed. As the DL based models need a dataset with a large collection of image pairs, a large dataset is collected to address the color restoration. The collected images are from challenging scenes where the sunlight radiation is sufficient to give absorption/reflectance properties to the considered scenes. An extensive evaluation has been conducted on the CNN models, differences from most of the restored images are almost imperceptible to the human eye. The next proposal of the thesis is the validation of the usage of SSC images in the edge detection task. Three methods based on CNN have been proposed. While the first one is based on the most used model, holistically-nested edge detection (HED) termed as multispectral HED (MS-HED), the other two have been proposed observing the drawbacks of MS-HED. These two novel architectures have been designed from scratch (training from scratch); after the first architecture is validated in the visible domain a slight redesign is proposed to tackle the multispectral domain. Again, another dataset is collected to face this problem with SSCs. Even though edge detection is confronted in the multispectral domain, its qualitative and quantitative evaluation demonstrates the generalization in other datasets used for edge detection, improving state-of-the-art results.
 
  Address September 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-948531-9-7 Medium  
  Area Expedition Conference  
  Notes MSIAU; 600.122 Approved no  
  Call Number Admin @ si @ Sor2019 Serial 3391  
Permanent link to this record
 

 
Author Antonio Esteban Lansaque edit  isbn
openurl 
  Title An Endoscopic Navigation System for Lung Cancer Biopsy Type Book Whole
  Year (down) 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Lung cancer is one of the most diagnosed cancers among men and women. Actually,
lung cancer accounts for 13% of the total cases with a 5-year global survival
rate in patients. Although Early detection increases survival rate from 38% to 67%, accurate diagnosis remains a challenge. Pathological confirmation requires extracting a sample of the lesion tissue for its biopsy. The preferred procedure for tissue biopsy is called bronchoscopy. A bronchoscopy is an endoscopic technique for the internal exploration of airways which facilitates the performance of minimal invasive interventions with low risk for the patient. Recent advances in bronchoscopic devices have increased their use for minimal invasive diagnostic and intervention procedures, like lung cancer biopsy sampling. Despite the improvement in bronchoscopic device quality, there is a lack of intelligent computational systems for supporting in-vivo clinical decision during examinations. Existing technologies fail to accurately reach the lesion due to several aspects at intervention off-line planning and poor intra-operative guidance at exploration time. Existing guiding systems radiate patients and clinical staff,might be expensive and achieve a suboptimlal 70% of yield boost. Diagnostic yield could be improved reducing radiation and costs by developing intra-operative support systems able to guide the bronchoscopist to the lesion during the intervention. The goal of this PhD thesis is to develop an image-based navigation systemfor intra-operative guidance of bronchoscopists to a target lesion across a path previously planned on a CT-scan. We propose a 3D navigation system which uses the anatomy of video bronchoscopy frames to locate the bronchoscope within the airways. Once the bronchoscope is located, our navigation system is able to indicate the bifurcation which needs to be followed to reach the lesion. In order to facilitate an off-line validation
as realistic as possible, we also present a method for augmenting simulated virtual bronchoscopies with the appearance of intra-operative videos. Experiments performed on augmented and intra-operative videos, prove that our algorithm can be speeded up for an on-line implementation in the operating room.
 
  Address October 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Carles Sanchez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-0-2 Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ Est2019 Serial 3392  
Permanent link to this record
 

 
Author Lichao Zhang edit  isbn
openurl 
  Title Towards end-to-end Networks for Visual Tracking in RGB and TIR Videos Type Book Whole
  Year (down) 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In the current work, we identify several problems of current tracking systems. The lack of large-scale labeled datasets hampers the usage of deep learning, especially end-to-end training, for tracking in TIR images. Therefore, many methods for tracking on TIR data are still based on hand-crafted features. This situation also happens in multi-modal tracking, e.g. RGB-T tracking. Another reason, which hampers the development of RGB-T tracking, is that there exists little research on the fusion mechanisms for combining information from RGB and TIR modalities. One of the crucial components of most trackers is the update module. For the currently existing end-to-end tracking architecture, e.g, Siamese trackers, the online model update is still not taken into consideration at the training stage. They use no-update or a linear update strategy during the inference stage. While such a hand-crafted approach to updating has led to improved results, its simplicity limits the potential gain likely to be obtained by learning to update.

To address the data-scarcity for TIR and RGB-T tracking, we use image-to-image translation to generate a large-scale synthetic TIR dataset. This dataset allows us to perform end-to-end training for TIR tracking. Furthermore, we investigate several fusion mechanisms for RGB-T tracking. The multi-modal trackers are also trained in an end-to-end manner on the synthetic data. To improve the standard online update, we pose the updating step as an optimization problem which can be solved by training a neural network. Our approach thereby reduces the hand-crafted components in the tracking pipeline and sets a further step in the direction of a complete end-to-end trained tracking network which also considers updating during optimization.
 
  Address November 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Abel Gonzalez;Fahad Shahbaz Khan  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-1210011-1-9 Medium  
  Area Expedition Conference  
  Notes LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ Zha2019 Serial 3393  
Permanent link to this record
 

 
Author Lu Yu edit  isbn
openurl 
  Title Semantic Representation: From Color to Deep Embeddings Type Book Whole
  Year (down) 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract One of the fundamental problems of computer vision is to represent images with compact semantically relevant embeddings. These embeddings could then be used in a wide variety of applications, such as image retrieval, object detection, and video search. The main objective of this thesis is to study image embeddings from two aspects: color embeddings and deep embeddings.
In the first part of the thesis we start from hand-crafted color embeddings. We propose a method to order the additional color names according to their complementary nature with the basic eleven color names. This allows us to compute color name representations with high discriminative power of arbitrary length. Psychophysical experiments confirm that our proposed method outperforms baseline approaches. Secondly, we learn deep color embeddings from weakly labeled data by adding an attention strategy. The attention branch is able to correctly identify the relevant regions for each class. The advantage of our approach is that it can learn color names for specific domains for which no pixel-wise labels exists.
In the second part of the thesis, we focus on deep embeddings. Firstly, we address the problem of compressing large embedding networks into small networks, while maintaining similar performance. We propose to distillate the metrics from a teacher network to a student network. Two new losses are introduced to model the communication of a deep teacher network to a small student network: one based on an absolute teacher, where the student aims to produce the same embeddings as the teacher, and one based on a relative teacher, where the distances between pairs of data points is communicated from the teacher to the student. In addition, various aspects of distillation have been investigated for embeddings, including hint and attention layers, semi-supervised learning and cross quality distillation. Finally, another aspect of deep metric learning, namely lifelong learning, is studied. We observed some drift occurs during training of new tasks for metric learning. A method to estimate the semantic drift based on the drift which is experienced by data of the current task during its training is introduced. Having this estimation, previous tasks can be compensated for this drift, thereby improving their performance. Furthermore, we show that embedding networks suffer significantly less from catastrophic forgetting compared to classification networks when learning new tasks.
 
  Address November 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Yongmei Cheng  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-3-3 Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ Yu2019 Serial 3394  
Permanent link to this record
 

 
Author Albert Berenguel edit  isbn
openurl 
  Title Analysis of background textures in banknotes and identity documents for counterfeit detection Type Book Whole
  Year (down) 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Counterfeiting and piracy are a form of theft that has been steadily growing in recent years. A counterfeit is an unauthorized reproduction of an authentic/genuine object. Banknotes and identity documents are two common objects of counterfeiting. The former is used by organized criminal groups to finance a variety of illegal activities or even to destabilize entire countries due the inflation effect. Generally, in order to run their illicit businesses, counterfeiters establish companies and bank accounts using fraudulent identity documents. The illegal activities generated by counterfeit banknotes and identity documents has a damaging effect on business, the economy and the general population. To fight against counterfeiters, governments and authorities around the globe cooperate and develop security features to protect their security documents. Many of the security features in identity documents can also be found in banknotes. In this dissertation we focus our efforts in detecting the counterfeit banknotes and identity documents by analyzing the security features at the background printing. Background areas on secure documents contain fine-line patterns and designs that are difficult to reproduce without the manufacturers cutting-edge printing equipment. Our objective is to find the loose of resolution between the genuine security document and the printed counterfeit version with a publicly available commercial printer. We first present the most complete survey to date in identity and banknote security features. The compared algorithms and systems are based on computer vision and machine learning. Then we advance to present the banknote and identity counterfeit dataset we have built and use along all this thesis. Afterwards, we evaluate and adapt algorithms in the literature for the security background texture analysis. We study this problem from the point of view of robustness, computational efficiency and applicability into a real and non-controlled industrial scenario, proposing key insights to use these algorithms. Next, within the industrial environment of this thesis, we build a complete service oriented architecture to detect counterfeit documents. The mobile application and the server framework intends to be used even by non-expert document examiners to spot counterfeits. Later, we re-frame the problem of background texture counterfeit detection as a full-reference game of spotting the differences, by alternating glimpses between a counterfeit and a genuine background using recurrent neural networks. Finally, we deal with the lack of counterfeit samples, studying different approaches based on anomaly detection.  
  Address November 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Oriol Ramos Terrades;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-2-6 Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ Ber2019 Serial 3395  
Permanent link to this record
 

 
Author Xialei Liu edit  isbn
openurl 
  Title Visual recognition in the wild: learning from rankings in small domains and continual learning in new domains Type Book Whole
  Year (down) 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep convolutional neural networks (CNNs) have achieved superior performance in many visual recognition application, such as image classification, detection and segmentation. In this thesis we address two limitations of CNNs. Training deep CNNs requires huge amounts of labeled data, which is expensive and labor intensive to collect. Another limitation is that training CNNs in a continual learning setting is still an open research question. Catastrophic forgetting is very likely when adapting trained models to new environments or new tasks. Therefore, in this thesis, we aim to improve CNNs for applications with limited data and to adapt CNNs continually to new tasks.
Self-supervised learning leverages unlabelled data by introducing an auxiliary task for which data is abundantly available. In the first part of the thesis, we show how rankings can be used as a proxy self-supervised task for regression problems. Then we propose an efficient backpropagation technique for Siamese networks which prevents the redundant computation introduced by the multi-branch network architecture. In addition, we show that measuring network uncertainty on the self-supervised proxy task is a good measure of informativeness of unlabeled data. This can be used to drive an algorithm for active learning. We then apply our framework on two regression problems: Image Quality Assessment (IQA) and Crowd Counting. For both, we show how to automatically generate ranked image sets from unlabeled data. Our results show that networks trained to regress to the ground truth targets for labeled data and to simultaneously learn to rank unlabeled data obtain significantly better, state-of-the-art results. We further show that active learning using rankings can reduce labeling effort by up to 50\% for both IQA and crowd counting.
In the second part of the thesis, we propose two approaches to avoiding catastrophic forgetting in sequential task learning scenarios. The first approach is derived from Elastic Weight Consolidation, which uses a diagonal Fisher Information Matrix (FIM) to measure the importance of the parameters of the network. However the diagonal assumption is unrealistic. Therefore, we approximately diagonalize the FIM using a set of factorized rotation parameters. This leads to significantly better performance on continual learning of sequential tasks. For the second approach, we show that forgetting manifests differently at different layers in the network and propose a hybrid approach where distillation is used in the feature extractor and replay in the classifier via feature generation. Our method addresses the limitations of generative image replay and probability distillation (i.e. learning without forgetting) and can naturally aggregate new tasks in a single, well-calibrated classifier. Experiments confirm that our proposed approach outperforms the baselines and some start-of-the-art methods.
 
  Address December 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Andrew Bagdanov  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-4-0 Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ Liu2019 Serial 3396  
Permanent link to this record
 

 
Author Sergio Escalera; Stephane Ayache; Jun Wan; Meysam Madadi; Umut Guçlu; Xavier Baro edit  url
doi  openurl
  Title Inpainting and Denoising Challenges Type Book Whole
  Year (down) 2019 Publication The Springer Series on Challenges in Machine Learning Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising, restoration, super-resolution, or inpainting.
Inpainting and Denoising Challenges comprises recent efforts dealing with image and video inpainting tasks. This includes winning solutions to the ChaLearn Looking at People inpainting and denoising challenges: human pose recovery, video de-captioning and fingerprint restoration.
This volume starts with a wide review on image denoising, retracing and comparing various methods from the pioneer signal processing methods, to machine learning approaches with sparse and low-rank models, and recent deep learning architectures with autoencoders and variants. The following chapters present results from the Challenge, including three competition tasks at WCCI and ECML 2018. The top best approaches submitted by participants are described, showing interesting contributions and innovating methods. The last two chapters propose novel contributions and highlight new applications that benefit from image/video inpainting.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ EAW2019 Serial 3398  
Permanent link to this record
 

 
Author Pau Rodriguez; Jordi Gonzalez; Josep M. Gonfaus; Xavier Roca edit   pdf
doi  openurl
  Title Integrating Vision and Language in Social Networks for Identifying Visual Patterns of Personality Traits Type Journal
  Year (down) 2019 Publication International Journal of Social Science and Humanity Abbreviated Journal IJSSH  
  Volume 9 Issue 1 Pages 6-12  
  Keywords  
  Abstract Social media, as a major platform for communication and information exchange, is a rich repository of the opinions and sentiments of 2.3 billion users about a vast spectrum of topics. In this sense, user text interactions are widely used to sense the whys of certain social user’s demands and cultural- driven interests. However, the knowledge embedded in the 1.8 billion pictures which are uploaded daily in public profiles has just started to be exploited. Following this trend on visual-based social analysis, we present a novel methodology based on neural networks to build a combined image-and-text based personality trait model, trained with images posted together with words found highly correlated to specific personality traits. So, the key contribution in this work is to explore whether OCEAN personality trait modeling can be addressed based on images, here called MindPics, appearing with certain tags with psychological insights. We found that there is a correlation between posted images and the personality estimated from their accompanying texts. Thus, the experimental results are consistent with previous cyber-psychology results based on texts, suggesting that images could also be used for personality estimation: classification results on some personality traits show that specific and characteristic visual patterns emerge, in essence representing abstract concepts. These results open new avenues of research for further refining the proposed personality model under the supervision of psychology experts, and to further substitute current textual personality questionnaires by image-based ones.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.119 Approved no  
  Call Number Admin @ si @ RGG2019 Serial 3414  
Permanent link to this record
 

 
Author M. Ivasic-Kos; M. Pobar; Jordi Gonzalez edit   pdf
doi  openurl
  Title Active Player Detection in Handball Videos Using Optical Flow and STIPs Based Measures Type Conference Article
  Year (down) 2019 Publication 13th International Conference on Signal Processing and Communication Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In handball videos recorded during the training, multiple players are present in the scene at the same time. Although they all might move and interact, not all players contribute to the currently relevant exercise nor practice the given handball techniques. The goal of this experiment is to automatically determine players on training footage that perform given handball techniques and are therefore considered active. It is a very challenging task for which a precise object detector is needed that can handle cluttered scenes with poor illumination, with many players present in different sizes and distances from the camera, partially occluded, moving fast. To determine which of the detected players are active, additional information is needed about the level of player activity. Since many handball actions are characterized by considerable changes in speed, position, and variations in the player's appearance, we propose using spatio-temporal interest points (STIPs) and optical flow (OF). Therefore, we propose an active player detection method combining the YOLO object detector and two activity measures based on STIPs and OF. The performance of the proposed method and activity measures are evaluated on a custom handball video dataset acquired during handball training lessons.  
  Address Gold Coast; Australia; December 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICSPCS2  
  Notes ISE; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ IPG2019 Serial 3415  
Permanent link to this record
 

 
Author Parichehr Behjati Ardakani; Diego Velazquez; Josep M. Gonfaus; Pau Rodriguez; Xavier Roca; Jordi Gonzalez edit   pdf
doi  openurl
  Title Catastrophic interference in Disguised Face Recognition Type Conference Article
  Year (down) 2019 Publication 9th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 11868 Issue Pages 64-75  
  Keywords Neural network forgetness; Face recognition; Disguised Faces  
  Abstract It is commonly known the natural tendency of artificial neural networks to completely and abruptly forget previously known information when learning new information. We explore this behaviour in the context of Face Verification on the recently proposed Disguised Faces in the Wild dataset (DFW). We empirically evaluate several commonly used DCNN architectures on Face Recognition and distill some insights about the effect of sequential learning on distinct identities from different datasets, showing that the catastrophic forgetness phenomenon is present even in feature embeddings fine-tuned on different tasks from the original domain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IbPRIA  
  Notes ISE; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ AVG2019 Serial 3416  
Permanent link to this record
 

 
Author Sounak Dey; Anguelos Nicolaou; Josep Llados; Umapada Pal edit   pdf
url  openurl
  Title Evaluation of the Effect of Improper Segmentation on Word Spotting Type Journal Article
  Year (down) 2019 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 22 Issue Pages 361-374  
  Keywords  
  Abstract Word spotting is an important recognition task in large-scale retrieval of document collections. In most of the cases, methods are developed and evaluated assuming perfect word segmentation. In this paper, we propose an experimental framework to quantify the goodness that word segmentation has on the performance achieved by word spotting methods in identical unbiased conditions. The framework consists of generating systematic distortions on segmentation and retrieving the original queries from the distorted dataset. We have tested our framework on several established and state-of-the-art methods using George Washington and Barcelona Marriage Datasets. The experiments done allow for an estimate of the end-to-end performance of word spotting methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.084; 600.121; 600.140; 600.129 Approved no  
  Call Number Admin @ si @ DNL2019 Serial 3455  
Permanent link to this record
 

 
Author Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero edit  url
doi  openurl
  Title Recurrent Comparator with attention models to detect counterfeit documents Type Conference Article
  Year (down) 2019 Publication 15th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper is focused on the detection of counterfeit documents via the recurrent comparison of the security textured background regions of two images. The main contributions are twofold: first we apply and adapt a recurrent comparator architecture with attention mechanism to the counterfeit detection task, which constructs a representation of the background regions by recurrently condition the next observation, learning the difference between genuine and counterfeit images through iterative glimpses. Second we propose a new counterfeit document dataset to ensure the generalization of the learned model towards the detection of the lack of resolution during the counterfeit manufacturing. The presented network, outperforms state-of-the-art classification approaches for counterfeit detection as demonstrated in the evaluation.  
  Address Sidney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.140; 600.121; 601.269 Approved no  
  Call Number Admin @ si @ BRL2019 Serial 3456  
Permanent link to this record
 

 
Author Fernando Vilariño edit  openurl
  Title Library Living Lab, Numérisation 3D des chapiteaux du cloître de Saint-Cugat : des citoyens co- créant le nouveau patrimoine culturel numérique Type Conference Article
  Year (down) 2019 Publication Intersectorialité et approche Living Labs. Entretiens Jacques-Cartier Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Montreal; Canada; December 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MV; DAG; 600.140; 600.121;SIAI Approved no  
  Call Number Admin @ si @ Vil2019a Serial 3457  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: